Application of Fuzzy Lattice Neurocomputing (FLN) in Ocean Satellite Images for Pattern Recognition

The main objective of this work is to improve the automated interpretation of ocean satellite images using a fuzzy lattice system that recognizes the most important ocean structures in satellite AVHRR (Advanced Very High Resolution Radiometer) images. This chapter presents a hybrid model based on an expert system segmentation method, a method of correlation-based feature selection, and a few classifiers including Bayesian nets (BN) and fuzzy lattice neural networks. The results obtained by the fuzzy lattice system are clearly better than the results obtained by ANNs (Artificial Neural Nets), knowledge based reasoning systems, and graphic expert system (GES).

[1]  Y. Yamagata,et al.  Bayesian feature selection for classifying multi-temporal SAR and TM data , 1997, IGARSS'97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing - A Scientific Vision for Sustainable Development.

[2]  M. Cantón,et al.  The spatial and temporal evolution of thermal structures in the Alborán Sea Mediterranean basin , 1998 .

[3]  Hong Guo,et al.  Automatic feature selection - a hybrid statistical approach , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[4]  S. S. Iyengar,et al.  Wavelet-based feature extraction from oceanographic images , 1998, IEEE Trans. Geosci. Remote. Sens..

[5]  David G. Stork,et al.  Pattern Classification , 1973 .

[6]  D. Nauck,et al.  Nefclass | a Neuro{fuzzy Approach for the Classification of Data , 1995 .

[7]  Irina Rish,et al.  An empirical study of the naive Bayes classifier , 2001 .

[8]  Pablo Sangrà,et al.  Island-induced eddies in the Canary islands , 1994 .

[9]  M. Cantón,et al.  Sea surface temperature variability in Alboran sea from satellite data , 1998 .

[10]  Serge Beucher Segmentation Tools in Mathematical Morphology , 1993, Handbook of Pattern Recognition and Computer Vision.

[11]  Matthew Lybanon,et al.  Automated boundary delineation in infrared ocean images , 1993, IEEE Trans. Geosci. Remote. Sens..

[12]  José Antonio Torres Arriaza,et al.  Competitive neural-net-based system for the automatic detection of oceanic mesoscalar structures on AVHRR scenes , 2003, IEEE Trans. Geosci. Remote. Sens..

[13]  Pericles A. Mitkas,et al.  Fuzzy lattice reasoning (FLR) classifier and its application for ambient ozone estimation , 2007, Int. J. Approx. Reason..

[14]  Matthew Lybanon Maltese Front variability from satellite observations based on automated detection , 1996, IEEE Trans. Geosci. Remote. Sens..

[15]  Vassilis G. Kaburlasos Towards a Unified Modeling and Knowledge-Representation based on Lattice Theory: Computational Intelligence and Soft Computing Applications (Studies in Computational Intelligence) , 2006 .

[16]  Thomas J. Watson,et al.  An empirical study of the naive Bayes classifier , 2001 .

[17]  Rafael C. González,et al.  Local Determination of a Moving Contrast Edge , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  V. Petridis,et al.  Learning and decision-making in the framework of fuzzy lattices , 2002 .

[19]  Pat Langley,et al.  Induction of Selective Bayesian Classifiers , 1994, UAI.

[20]  R. Delmas,et al.  Automatic segmentation of oceanic eddies on AVHRR thermal infrared sea surface images , 1995, 'Challenges of Our Changing Global Environment'. Conference Proceedings. OCEANS '95 MTS/IEEE.

[21]  Rudolf Kruse,et al.  A neuro-fuzzy approach to obtain interpretable fuzzy systems for function approximation , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[22]  M. Cantón-Garbín,et al.  Observations of oceanic mesoscale features and variability in the Canary Islands area from ERS-1 altimeter data, satellite infrared imagery and hydrographic measurements , 2002 .

[23]  Paul Wintz,et al.  Digital image processing (2nd ed.) , 1987 .

[24]  Pablo Sangrà,et al.  Life history of an anticyclonic eddy , 2005 .

[25]  Vassilios Petridis,et al.  Learning in the framework of fuzzy lattices , 1999, IEEE Trans. Fuzzy Syst..

[26]  Mark A. Hall,et al.  Correlation-based Feature Selection for Machine Learning , 2003 .

[27]  J. Canny Finding Edges and Lines in Images , 1983 .

[28]  M. Pacheco,et al.  Topographic effects on the mesoscale ocean circulation near Canarian archipelago examined by means of satellite images and laboratory simulations , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[29]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[30]  Eric D. Barton,et al.  The transition zone of the Canary Current upwelling region , 1998 .

[31]  Vassilios Petridis,et al.  Fuzzy Lattice Neurocomputing (FLN) models , 2000, Neural Networks.

[32]  José Antonio Torres Arriaza,et al.  An automatic cloud-masking system using backpro neural nets for AVHRR scenes , 2003, IEEE Trans. Geosci. Remote. Sens..