Prediction of protein–ligand binding affinity by free energy simulations: assumptions, pitfalls and expectations

Many limitations of current computer-aided drug design arise from the difficulty of reliably predicting the binding affinity of a small molecule to a biological target. There is thus a strong interest in novel computational methodologies that claim predictions of greater accuracy than current scoring functions, and at a throughput compatible with the rapid pace of drug discovery in the pharmaceutical industry. Notably, computational methodologies firmly rooted in statistical thermodynamics have received particular attention in recent years. Yet free energy calculations can be daunting to learn for a novice user because of numerous technical issues and various approaches advocated by experts in the field. The purpose of this article is to provide an overview of the current capabilities of free energy calculations and to discuss the applicability of this technology to drug discovery.

[1]  J. Ilja Siepmann,et al.  Novel Configurational-Bias Monte Carlo Method for Branched Molecules. Transferable Potentials for Phase Equilibria. 2. United-Atom Description of Branched Alkanes , 1999 .

[2]  Kenneth A Krohn,et al.  Interpreting enzyme and receptor kinetics: keeping it simple, but not too simple. , 2003, Nuclear medicine and biology.

[3]  C. Jarzynski Nonequilibrium Equality for Free Energy Differences , 1996, cond-mat/9610209.

[4]  R. Zwanzig High‐Temperature Equation of State by a Perturbation Method. I. Nonpolar Gases , 1954 .

[5]  Campbell McInnes,et al.  Virtual screening strategies in drug discovery. , 2007, Current opinion in chemical biology.

[6]  M. Gilson,et al.  Free energy, entropy, and induced fit in host-guest recognition: calculations with the second-generation mining minima algorithm. , 2004, Journal of the American Chemical Society.

[7]  D. Boschelli,et al.  4-Anilino-6,7-dialkoxyquinoline-3-carbonitrile inhibitors of epidermal growth factor receptor kinase and their bioisosteric relationship to the 4-anilino-6,7-dialkoxyquinazoline inhibitors. , 2000, Journal of medicinal chemistry.

[8]  M. Mezei The finite difference thermodynamic integration, tested on calculating the hydration free energy difference between acetone and dimethylamine in water , 1987 .

[9]  Anastassia N Alexandrova,et al.  Polarization Effects for Hydrogen-Bonded Complexes of Substituted Phenols with Water and Chloride Ion. , 2007, Journal of chemical theory and computation.

[10]  Arieh Ben-Naim,et al.  Molecular Theory of Solutions , 2006 .

[11]  B. Berne,et al.  A Multiple-Time-Step Molecular Dynamics Algorithm for Macromolecules , 1994 .

[12]  B. Berne,et al.  Multiple "time step" Monte Carlo , 2002 .

[13]  Julien Michel,et al.  Efficient Generalized Born Models for Monte Carlo Simulations. , 2006, Journal of chemical theory and computation.

[14]  Scott S. Hampton,et al.  Shadow hybrid Monte Carlo: an efficient propagator in phase space of macromolecules , 2004 .

[15]  D. Theodorou,et al.  A concerted rotation algorithm for atomistic Monte Carlo simulation of polymer melts and glasses , 1993 .

[16]  Nohad Gresh,et al.  Anisotropic, Polarizable Molecular Mechanics Studies of Inter- and Intramolecular Interactions and Ligand-Macromolecule Complexes. A Bottom-Up Strategy. , 2007, Journal of chemical theory and computation.

[17]  Zhuyan Guo,et al.  Application of the lambda-dynamics method to evaluate the relative binding free energies of inhibitors to HCV protease. , 2003, Journal of medicinal chemistry.

[18]  Tim N. Heinz,et al.  Combining the lattice-sum and reaction-field approaches for evaluating long-range electrostatic interactions in molecular simulations. , 2005, The Journal of chemical physics.

[19]  Pengyu Y. Ren,et al.  Polarizable Atomic Multipole Water Model for Molecular Mechanics Simulation , 2003 .

[20]  Alan E. Mark,et al.  Estimating the Relative Free Energy of Different Molecular States with Respect to a Single Reference State , 1996 .

[21]  A. Leach Molecular Modelling: Principles and Applications , 1996 .

[22]  Michael R. Shirts,et al.  Statistically optimal analysis of samples from multiple equilibrium states. , 2008, The Journal of chemical physics.

[23]  Elizabeth A. Harker,et al.  In Silico Improvement of beta3-peptide inhibitors of p53 x hDM2 and p53 x hDMX. , 2009, Journal of the American Chemical Society.

[24]  Pengyu Y. Ren,et al.  Calculation of protein–ligand binding free energy by using a polarizable potential , 2008, Proceedings of the National Academy of Sciences.

[25]  Chris Oostenbrink,et al.  Calculating zeros: Non-equilibrium free energy calculations , 2006 .

[26]  Mihaly Mezei,et al.  Grand Canonical Monte Carlo Simulation of Water Positions in Crystal Hydrates , 1994 .

[27]  Michael K. Gilson,et al.  A synthetic host-guest system achieves avidin-biotin affinity by overcoming enthalpy–entropy compensation , 2007, Proceedings of the National Academy of Sciences.

[28]  Mark A Olson,et al.  An efficient hybrid explicit/implicit solvent method for biomolecular simulations , 2004, J. Comput. Chem..

[29]  William L Jorgensen,et al.  Efficient drug lead discovery and optimization. , 2009, Accounts of chemical research.

[30]  K. Dill,et al.  Predicting absolute ligand binding free energies to a simple model site. , 2007, Journal of molecular biology.

[31]  Charles L. Brooks,et al.  λ‐dynamics: A new approach to free energy calculations , 1996 .

[32]  Charles L. Brooks,et al.  Application of torsion angle molecular dynamics for efficient sampling of protein conformations , 2005, J. Comput. Chem..

[33]  William L. Jorgensen,et al.  Monte Carlo backbone sampling for polypeptides with variable bond angles and dihedral angles using concerted rotations and a Gaussian bias , 2003 .

[34]  Benoît Roux,et al.  Calculation of Standard Binding Free Energies:  Aromatic Molecules in the T4 Lysozyme L99A Mutant. , 2006, Journal of chemical theory and computation.

[35]  T. Darden,et al.  Molecular dynamics simulations of biomolecules: long-range electrostatic effects. , 1999, Annual review of biophysics and biomolecular structure.

[36]  J. Åqvist,et al.  Ligand binding affinities from MD simulations. , 2002, Accounts of chemical research.

[37]  Christopher J. Woods,et al.  An efficient method for the calculation of quantum mechanics/molecular mechanics free energies. , 2008, The Journal of chemical physics.

[38]  Thomas S. Peat,et al.  Practical Aspects of the SAMPL Challenge: Providing an Extensive Experimental Data Set for the Modeling Community , 2009, Journal of biomolecular screening.

[39]  Charles H. Bennett,et al.  Efficient estimation of free energy differences from Monte Carlo data , 1976 .

[40]  Julien Michel,et al.  The parameterization and validation of generalized born models using the pairwise descreening approximation , 2004, J. Comput. Chem..

[41]  Wilfred F. van Gunsteren,et al.  An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase , 2001, J. Comput. Chem..

[42]  David L Mobley,et al.  Small molecule hydration free energies in explicit solvent: An extensive test of fixed-charge atomistic simulations. , 2009, Journal of chemical theory and computation.

[43]  William L Jorgensen,et al.  Perspective on Free-Energy Perturbation Calculations for Chemical Equilibria. , 2008, Journal of chemical theory and computation.

[44]  P. Goodford A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. , 1985, Journal of medicinal chemistry.

[45]  Christopher J. Woods,et al.  Enhanced configurational sampling in binding free-energy calculations , 2003 .

[46]  Julien Michel,et al.  Protein-ligand binding affinity predictions by implicit solvent simulations: a tool for lead optimization? , 2006, Journal of medicinal chemistry.

[47]  Jed W. Pitera,et al.  A Comparison of Non-Bonded Scaling Approaches for Free Energy Calculations , 2002 .

[48]  Paolo Carnevali,et al.  Fragment-Based Computation of Binding Free Energies by Systematic Sampling , 2009, J. Chem. Inf. Model..

[49]  David L Mobley,et al.  The Confine-and-Release Method: Obtaining Correct Binding Free Energies in the Presence of Protein Conformational Change. , 2007, Journal of chemical theory and computation.

[50]  J. Onuchic,et al.  Folding a protein in a computer: An atomic description of the folding/unfolding of protein A , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[51]  William L Jorgensen,et al.  Optimization of diarylamines as non-nucleoside inhibitors of HIV-1 reverse transcriptase. , 2006, Bioorganic & medicinal chemistry letters.

[52]  Harold A. Scheraga,et al.  Preferential sampling near solutes in monte carlo calculations on dilute solutions , 1977 .

[53]  Christophe Chipot,et al.  Milestones in the Activation of a G Protein-Coupled Receptor. Insights from Molecular-Dynamics Simulations into the Human Cholecystokinin Receptor-1. , 2008, Journal of chemical theory and computation.

[54]  Matthew Clark,et al.  Grand Canonical Monte Carlo Simulation of Ligand-Protein Binding , 2006, J. Chem. Inf. Model..

[55]  Richard J. Hall,et al.  Protein-Ligand Docking against Non-Native Protein Conformers , 2008, J. Chem. Inf. Model..

[56]  Chris Oostenbrink,et al.  Single‐step perturbations to calculate free energy differences from unphysical reference states: Limits on size, flexibility, and character , 2003, J. Comput. Chem..

[57]  A. Mark,et al.  Avoiding singularities and numerical instabilities in free energy calculations based on molecular simulations , 1994 .

[58]  Caterina Barillari,et al.  Classification of water molecules in protein binding sites. , 2007, Journal of the American Chemical Society.

[59]  Julien Michel,et al.  Protein-Ligand Complexes:  Computation of the Relative Free Energy of Different Scaffolds and Binding Modes. , 2007, Journal of chemical theory and computation.

[60]  R. Swendsen,et al.  THE weighted histogram analysis method for free‐energy calculations on biomolecules. I. The method , 1992 .

[61]  Akash Khandelwal,et al.  A combination of docking, QM/MM methods, and MD simulation for binding affinity estimation of metalloprotein ligands. , 2005, Journal of medicinal chemistry.

[62]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[63]  Julien Michel,et al.  Prediction of the water content in protein binding sites. , 2009, The journal of physical chemistry. B.

[64]  M. Gilson,et al.  Calculation of protein-ligand binding affinities. , 2007, Annual review of biophysics and biomolecular structure.

[65]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[66]  Benoît Roux,et al.  Computation of binding free energy with molecular dynamics and grand canonical Monte Carlo simulations. , 2008, The Journal of chemical physics.

[67]  J. Essex,et al.  Hit identification and binding mode predictions by rigorous free energy simulations. , 2008, Journal of medicinal chemistry.

[68]  Heermann,et al.  Hybrid Monte Carlo method for condensed-matter systems. , 1992, Physical review. B, Condensed matter.

[69]  M Mezei,et al.  Grand canonical ensemble Monte Carlo simulation of the dCpG/proflavine crystal hydrate. , 1996, Biophysical journal.

[70]  Michael R. Shirts,et al.  Direct calculation of the binding free energies of FKBP ligands. , 2005, The Journal of chemical physics.

[71]  Andrew R. Leach,et al.  Structure-based Drug Discovery , 2007 .

[72]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[73]  W. L. Jorgensen The Many Roles of Computation in Drug Discovery , 2004, Science.

[74]  Jonathan W Essex,et al.  Protein-ligand binding affinity by nonequilibrium free energy methods. , 2008, The journal of physical chemistry. B.

[75]  Mihaly Mezei,et al.  Simulated Annealing of Chemical Potential: A General Procedure for Locating Bound Waters. Application to the Study of the Differential Hydration Propensities of the Major and Minor Grooves of DNA , 1996 .

[76]  Peter A. Kollman,et al.  FREE ENERGY CALCULATIONS : APPLICATIONS TO CHEMICAL AND BIOCHEMICAL PHENOMENA , 1993 .

[77]  C. Jarzynski Equilibrium free-energy differences from nonequilibrium measurements: A master-equation approach , 1997, cond-mat/9707325.

[78]  A. Pohorille,et al.  Free energy calculations : theory and applications in chemistry and biology , 2007 .

[79]  Thomas Steinbrecher,et al.  Bornyl (3,4,5-trihydroxy)-cinnamate--an optimized human neutrophil elastase inhibitor designed by free energy calculations. , 2008, Bioorganic & medicinal chemistry.

[80]  David L Mobley,et al.  Nonlinear scaling schemes for Lennard-Jones interactions in free energy calculations. , 2007, The Journal of chemical physics.

[81]  A. Laio,et al.  Flexible docking in solution using metadynamics. , 2005, Journal of the American Chemical Society.

[82]  Alessandra Villa,et al.  Sampling and convergence in free energy calculations of protein-ligand interactions: The binding of triphenoxypyridine derivatives to factor Xa and trypsin , 2003, J. Comput. Aided Mol. Des..

[83]  Irwin Oppenheim,et al.  Statistical Mechanical Theory of Transport Processes. VII. The Coefficient of Thermal Conductivity of Monatomic Liquids , 1954 .

[84]  K. Dill,et al.  Binding of small-molecule ligands to proteins: "what you see" is not always "what you get". , 2009, Structure.

[85]  William L Jorgensen,et al.  Optimization of pyrimidinyl- and triazinyl-amines as non-nucleoside inhibitors of HIV-1 reverse transcriptase. , 2006, Bioorganic & medicinal chemistry letters.

[86]  Stefan Boresch,et al.  Absolute Binding Free Energies: A Quantitative Approach for Their Calculation , 2003 .

[87]  Holger Gohlke,et al.  Target flexibility: an emerging consideration in drug discovery and design. , 2008, Journal of medicinal chemistry.

[88]  William L Jorgensen,et al.  Halide, Ammonium, and Alkali Metal Ion Parameters for Modeling Aqueous Solutions. , 2006, Journal of chemical theory and computation.

[89]  Jonathan W. Essex,et al.  The development of replica-exchange-based free-energy methods , 2003 .

[90]  Y. Cheng,et al.  Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. , 1973, Biochemical pharmacology.

[91]  J. Ponder,et al.  Force fields for protein simulations. , 2003, Advances in protein chemistry.

[92]  Wolfgang Wenzel,et al.  Flexible side chain models improve enrichment rates in in silico screening. , 2008, Journal of medicinal chemistry.

[93]  Charles L. Brooks,et al.  CHARMM fluctuating charge force field for proteins: I parameterization and application to bulk organic liquid simulations , 2004, J. Comput. Chem..

[94]  G. Klebe Virtual ligand screening: strategies, perspectives and limitations , 2006, Drug Discovery Today.

[95]  B. Roux,et al.  Computations of standard binding free energies with molecular dynamics simulations. , 2009, The journal of physical chemistry. B.

[96]  S. Schmidler,et al.  Preserving the Boltzmann ensemble in replica-exchange molecular dynamics. , 2008, The Journal of chemical physics.

[97]  Nikolay Galkin,et al.  Application of a polarizable force field to calculations of relative protein–ligand binding affinities , 2008, Proceedings of the National Academy of Sciences.

[98]  Michael R Shirts,et al.  Parallelized-over-parts computation of absolute binding free energy with docking and molecular dynamics. , 2006, The Journal of chemical physics.

[99]  Mihaly Mezei,et al.  Structure-guided optimization of small molecules inhibiting human immunodeficiency virus 1 Tat association with the human coactivator p300/CREB binding protein-associated factor. , 2007, Journal of medicinal chemistry.

[100]  Wei Zhang,et al.  A point‐charge force field for molecular mechanics simulations of proteins based on condensed‐phase quantum mechanical calculations , 2003, J. Comput. Chem..

[101]  David L Mobley,et al.  Predicting ligand binding affinity with alchemical free energy methods in a polar model binding site. , 2009, Journal of molecular biology.

[102]  J. Åqvist,et al.  Calculation of absolute binding free energies for charged ligands and effects of long‐range electrostatic interactions , 1996 .

[103]  Cristiano Ruch Werneck Guimarães,et al.  Elucidation of fatty acid amide hydrolase inhibition by potent alpha-ketoheterocycle derivatives from Monte Carlo simulations. , 2005, Journal of the American Chemical Society.

[104]  Benoît Roux,et al.  Modeling induced polarization with classical Drude oscillators: Theory and molecular dynamics simulation algorithm , 2003 .

[105]  M. Gilson,et al.  The statistical-thermodynamic basis for computation of binding affinities: a critical review. , 1997, Biophysical journal.

[106]  A Mitsutake,et al.  Generalized-ensemble algorithms for molecular simulations of biopolymers. , 2000, Biopolymers.

[107]  David L Mobley,et al.  Accurate and efficient corrections for missing dispersion interactions in molecular simulations. , 2007, The journal of physical chemistry. B.

[108]  Lev D. Gelb,et al.  Monte Carlo simulations using sampling from an approximate potential , 2003 .

[109]  Rebecca C. Wade,et al.  COMPUTATIONAL ALCHEMY TO CALCULATE ABSOLUTE PROTEIN-LIGAND BINDING FREE ENERGY , 1998 .

[110]  R. Friesner,et al.  Novel procedure for modeling ligand/receptor induced fit effects. , 2006, Journal of medicinal chemistry.

[111]  A. Laio,et al.  Escaping free-energy minima , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[112]  Alessandra Villa,et al.  Incorporating the effect of ionic strength in free energy calculations using explicit ions , 2005, J. Comput. Chem..

[113]  William L. Jorgensen,et al.  Optimization of azoles as anti-human immunodeficiency virus agents guided by free-energy calculations. , 2008, Journal of the American Chemical Society.

[114]  Mihaly Mezei,et al.  Grand-canonical ensemble Monte Carlo study of dense liquid Lennard-Jones, soft spheres and water , 1987 .

[115]  D. A. Dougherty,et al.  Cation-π interactions in structural biology , 1999 .

[116]  William L. Jorgensen,et al.  FEP-guided selection of bicyclic heterocycles in lead optimization for non-nucleoside inhibitors of HIV-1 reverse transcriptase. , 2006 .

[117]  Thomas B. Woolf,et al.  Improving the efficiency and reliability of free energy perturbation calculations using overlap sampling methods , 2004, J. Comput. Chem..

[118]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[119]  P. Kollman,et al.  Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding , 2000 .

[120]  Mika A. Kastenholz,et al.  Computation of methodology-independent ionic solvation free energies from molecular simulations. I. The electrostatic potential in molecular liquids. , 2006, The Journal of chemical physics.

[121]  R. Swendsen,et al.  Comparison of free energy methods for molecular systems. , 2006, The Journal of chemical physics.

[122]  Wilfred F van Gunsteren,et al.  Free energies of binding of polychlorinated biphenyls to the estrogen receptor from a single simulation , 2003, Proteins.

[123]  Charles L. Brooks,et al.  λ‐Dynamics free energy simulation methods , 2009, J. Comput. Chem..

[124]  J. Pitera,et al.  Simulations of the estrogen receptor ligand-binding domain: affinity of natural ligands and xenoestrogens. , 2000, Journal of medicinal chemistry.

[125]  Hideaki Fujitani,et al.  Calculation of absolute free energy of binding for theophylline and its analogs to RNA aptamer using nonequilibrium work values , 2007 .

[126]  Matthew Clark,et al.  Grand Canonical Free-Energy Calculations of Protein-Ligand Binding , 2009, J. Chem. Inf. Model..

[127]  Jonathan W Essex,et al.  Assessment of nonequilibrium free energy methods. , 2009, The journal of physical chemistry. B.

[128]  David L Mobley,et al.  Treating entropy and conformational changes in implicit solvent simulations of small molecules. , 2008, The journal of physical chemistry. B.

[129]  Daan Frenkel,et al.  Configurational bias Monte Carlo: a new sampling scheme for flexible chains , 1992 .

[130]  Michael R. Shirts,et al.  Extremely precise free energy calculations of amino acid side chain analogs: Comparison of common molecular mechanics force fields for proteins , 2003 .

[131]  C. E. Peishoff,et al.  A critical assessment of docking programs and scoring functions. , 2006, Journal of medicinal chemistry.

[132]  W. L. Jorgensen,et al.  Monte Carlo simulation of differences in free energies of hydration , 1985 .

[133]  Martin Karplus,et al.  Probability Distributions for Complex Systems: Adaptive Umbrella Sampling of the Potential Energy , 1998 .

[134]  William L. Jorgensen,et al.  Accuracy of free energies of hydration using CM1 and CM3 atomic charges , 2004, J. Comput. Chem..

[135]  Di Wu,et al.  Phase-space overlap measures. I. Fail-safe bias detection in free energies calculated by molecular simulation. , 2005, The Journal of chemical physics.

[136]  Benoît Roux,et al.  Computations of Absolute Solvation Free Energies of Small Molecules Using Explicit and Implicit Solvent Model. , 2009, Journal of chemical theory and computation.

[137]  Michael R. Shirts,et al.  Equilibrium free energies from nonequilibrium measurements using maximum-likelihood methods. , 2003, Physical review letters.

[138]  M. Gilson,et al.  Ligand configurational entropy and protein binding , 2007, Proceedings of the National Academy of Sciences.

[139]  B. Roux,et al.  Absolute binding free energy calculations using molecular dynamics simulations with restraining potentials. , 2006, Biophysical journal.

[140]  J. Åqvist,et al.  Ion-water interaction potentials derived from free energy perturbation simulations , 1990 .

[141]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[142]  W. L. Jorgensen,et al.  Energetics of displacing water molecules from protein binding sites: consequences for ligand optimization. , 2009, Journal of the American Chemical Society.

[143]  Julien Michel,et al.  Prediction of partition coefficients by multiscale hybrid atomic-level/coarse-grain simulations. , 2008, The journal of physical chemistry. B.

[144]  Christopher J. Woods,et al.  Fluoride-selective binding in a new deep cavity calix[4]pyrrole: experiment and theory. , 2002, Journal of the American Chemical Society.

[145]  T. Straatsma,et al.  Separation‐shifted scaling, a new scaling method for Lennard‐Jones interactions in thermodynamic integration , 1994 .

[146]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[147]  Mika A. Kastenholz,et al.  Computation of methodology-independent ionic solvation free energies from molecular simulations. II. The hydration free energy of the sodium cation. , 2006, The Journal of chemical physics.

[148]  Julian Tirado-Rives,et al.  Computer-aided design of non-nucleoside inhibitors of HIV-1 reverse transcriptase. , 2006, Bioorganic & medicinal chemistry letters.

[149]  Di Wu,et al.  Phase-space overlap measures. II. Design and implementation of staging methods for free-energy calculations. , 2005, The Journal of chemical physics.

[150]  Mihaly Mezei,et al.  A cavity-biased (T, V, μ) Monte Carlo method for the computer simulation of fluids , 1980 .

[151]  Jonathan W. Essex,et al.  A review of protein-small molecule docking methods , 2002, J. Comput. Aided Mol. Des..

[152]  Jun Wang,et al.  Determination of conformational free energies of peptides by multidimensional adaptive umbrella sampling. , 2006, The Journal of chemical physics.

[153]  Simon McIntosh-Smith,et al.  Massively Multicore Parallelization of Kohn-Sham Theory. , 2008, Journal of chemical theory and computation.

[154]  Wilfred F van Gunsteren,et al.  Free energies of ligand binding for structurally diverse compounds. , 2005, Proceedings of the National Academy of Sciences of the United States of America.