Spatial cointegration and heteroscedasticity

A two-step Lagrange Multiplier test strategy has recently been suggested as a tool to reveal spatial cointegration. The present paper generalises the test procedure by incorporating control for unobserved heteroscedasticity. Using Monte Carlo simulation, the behaviour of several relevant tests for spatial cointegration and/or heteroscedasticity is investigated. The two-step test for spatial cointegration appears to be robust towards heteroscedasticity. While several tests for heteroscedasticity prove to be inconclusive under certain circumstances, a Lagrange Multiplier test for heteroscedasticity based on spatially differenced variables is shown to serve well as an indication of heteroscedasticity irrespective of cointegration status.

[1]  Bernard Fingleton,et al.  Spurious Spatial Regression: Some Monte Carlo Results with a Spatial Unit Root and Spatial Cointegration , 1999 .

[2]  Denis Hémon,et al.  On the variance of the sample correlation between two independent lattice processes , 1981, Journal of Applied Probability.

[3]  Toshihisa Toyoda,et al.  Estimation of regression coefficients after a preliminary test for homoscedasticity , 1980 .

[4]  Daniel A. Griffith,et al.  Spatial Statistics: Past, Present, and Future , 1990 .

[5]  H. White A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity , 1980 .

[6]  T. Coburn Spatial Data Analysis by Example , 1991 .

[7]  T. Breurch,et al.  A simple test for heteroscedasticity and random coefficient variation (econometrica vol 47 , 1979 .

[8]  R. Haining The moving average model for spatial interaction , 1978 .

[9]  J. Lauridsen Spatial autoregressively distributed lag models: equivalent forms, estimation, and an illustrative commuting model , 2006 .

[10]  Roger Koenker,et al.  A note on studentizing a test for heteroscedasticity , 1981 .

[11]  J. Keith Ord,et al.  Spatial Processes Models and Applications , 1981 .

[12]  J. Lauridsen,et al.  Dynamic Spatial Modelling of Regional Convergence Process , 2004 .

[13]  Daniel A. Griffith,et al.  Hidden negative spatial autocorrelation , 2006, J. Geogr. Syst..

[14]  Michael Tiefelsdorf,et al.  Modelling Spatial Processes , 2000 .

[15]  Lw Hepple,et al.  Bayesian Techniques in Spatial and Network Econometrics: 1. Model Comparison and Posterior Odds , 1995 .

[16]  H. White,et al.  Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties☆ , 1985 .

[17]  Michael Tiefelsdorf,et al.  Global and local spatial autocorrelation in bounded regular tessellations , 2000, J. Geogr. Syst..

[18]  John G. Cragg Estimation and testing in time-series regression models with heteroscedastic disturbances , 1982 .

[19]  Robert Haining,et al.  Spatial Data Analysis: Theory and Practice , 2003 .

[20]  Lw Hepple,et al.  Bayesian Techniques in Spatial and Network Econometrics: 2. Computational Methods and Algorithms , 1995 .

[21]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[22]  D Hémon,et al.  Assessing the significance of the correlation between two spatial processes. , 1989, Biometrics.

[23]  Robert F. Engle,et al.  Estimates of the Variance of U. S. Inflation Based upon the ARCH Model , 1983 .

[24]  Brian D. Ripley,et al.  Spatial Statistics: Ripley/Spatial Statistics , 2005 .

[25]  Anil K. Bera,et al.  Simple diagnostic tests for spatial dependence , 1996 .

[26]  Luc Anselin,et al.  Spatial Externalities, Spatial Multipliers, And Spatial Econometrics , 2003 .

[27]  A. Harvey Estimating Regression Models with Multiplicative Heteroscedasticity , 1976 .

[28]  Halbert White,et al.  A Note on Computing the Heteroskedasticity Consistent Covariance Matrix Using Instrumental Variable Techniques , 2009 .

[29]  Sergio J. Rey,et al.  Specification Searches in Spatial Econometrics: The Relevance of Hendry's Methodology , 2003 .

[30]  W. E. Taylor Small Sample Properties of a Class of Two Stage Aitken Estimators , 1977 .

[31]  R. Koenker,et al.  Robust Tests for Heteroscedasticity Based on Regression Quantiles , 1982 .

[32]  Mukhtar M. Ali,et al.  A study of several new and existing tests for heteroscedasticity in the general linear model , 1984 .

[33]  M. Tiefelsdorf Modelling spatial processes : the identification and analysis of spatial relationships in regression residuals by means of Moran's I : with 32 figures and 8 talbes , 1999 .

[34]  J. Lauridsen,et al.  Spatial patterns in intermunicipal Danish commuting , 1998 .

[35]  S. J. Prais,et al.  The Analysis of Family Budgets , 1956 .

[36]  P. Whittle ON STATIONARY PROCESSES IN THE PLANE , 1954 .

[37]  G. Arbia Spatial Econometrics , 2006, Encyclopedia of Big Data.

[38]  J. Lauridsen,et al.  A wald Test for Spatial Nonstationarity , 2004 .

[39]  L. Anselin Spatial Econometrics: Methods and Models , 1988 .

[40]  Harry H. Kelejian,et al.  Spatial Correlation: A Suggested Alternative to the Autoregressive Model , 1995 .

[41]  Adrian Pagan,et al.  The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics , 1980 .

[42]  S. J. Prais,et al.  The analysis of family budgets , 1955 .

[43]  K. Ord Estimation Methods for Models of Spatial Interaction , 1975 .

[44]  K. Mardia,et al.  Maximum likelihood estimation of models for residual covariance in spatial regression , 1984 .

[45]  Daniel A. Griffith,et al.  Simplifying the normalizing factor in spatial autoregressions for irregular lattices , 1992 .

[46]  Jørgen Lauridsen,et al.  A test strategy for spurious spatial regression, spatial nonstationarity, and spatial cointegration , 2006 .

[47]  D. B. Duncan,et al.  Estimating Heteroscedastic Variances in Linear Models , 1975 .

[48]  Jesús Mur,et al.  Unit Roots and Deterministic Trends in Spatial Econometric Models , 2003 .