Shape optimisation with multiresolution subdivision surfaces and immersed finite elements

Abstract We develop a new optimisation technique that combines multiresolution subdivision surfaces for boundary description with immersed finite elements for the discretisation of the primal and adjoint problems of optimisation. Similar to wavelets, multiresolution surfaces represent the domain boundary using a coarse control mesh and a sequence of detail vectors. Based on the multiresolution decomposition efficient and fast algorithms are available for reconstructing control meshes of varying fineness. During shape optimisation the vertex coordinates of control meshes are updated using the computed shape gradient information. By virtue of the multiresolution editing semantics, updating the coarse control mesh vertex coordinates leads to large-scale geometry changes and, conversely, updating the fine control mesh coordinates leads to small-scale geometry changes. In our computations we start by optimising the coarsest control mesh and refine it each time the cost function reaches a minimum. This approach effectively prevents the appearance of non-physical boundary geometry oscillations and control mesh pathologies, like inverted elements. Independent of the fineness of the control mesh used for optimisation, on the immersed finite element grid the domain boundary is always represented with a relatively fine control mesh of fixed resolution. With the immersed finite element method there is no need to maintain an analysis suitable domain mesh. In some of the presented two and three-dimensional elasticity examples the topology derivative is used for introducing new holes inside the domain. The merging or removing of holes is not considered.

[1]  Christian Rössl,et al.  Laplacian surface editing , 2004, SGP '04.

[2]  Xiaoming Wang,et al.  A level set method for structural topology optimization , 2003 .

[3]  M. Bendsøe Optimal shape design as a material distribution problem , 1989 .

[4]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[5]  Alain Dervieux,et al.  A hierarchical approach for shape optimization , 1994 .

[6]  F. Cirak,et al.  A subdivision-based implementation of the hierarchical b-spline finite element method , 2013 .

[7]  Michael F. Cohen,et al.  Hierarchical and variational geometric modeling with wavelets , 1995, I3D '95.

[8]  Kurt Maute,et al.  Level-set methods for structural topology optimization: a review , 2013 .

[9]  Malcolm A. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1998 .

[10]  K. Svanberg The method of moving asymptotes—a new method for structural optimization , 1987 .

[11]  Henning Biermann,et al.  Approximate Boolean operations on free-form solids , 2001, SIGGRAPH.

[12]  Luca Weisz,et al.  Design Sensitivity Analysis Of Structural Systems , 2016 .

[13]  Carl de Boor,et al.  The Quasi-Interpolant as a Tool in Elementary Polynomial Spline Theory , 1973 .

[14]  Raino A. E. Mäkinen,et al.  Introduction to shape optimization - theory, approximation, and computation , 2003, Advances in design and control.

[15]  Peter Schröder,et al.  Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision , 2002, Comput. Aided Des..

[16]  Jean-Antoine Désidéri,et al.  Nested and self-adaptive Bézier parameterizations for shape optimization , 2007, J. Comput. Phys..

[17]  M. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1978 .

[18]  O. SIAMJ.,et al.  A CLASS OF GLOBALLY CONVERGENT OPTIMIZATION METHODS BASED ON CONSERVATIVE CONVEX SEPARABLE APPROXIMATIONS∗ , 2002 .

[19]  Peter Schröder,et al.  Fitting subdivision surfaces , 2001, Proceedings Visualization, 2001. VIS '01..

[20]  Ramana V. Grandhi,et al.  A survey of structural and multidisciplinary continuum topology optimization: post 2000 , 2014 .

[21]  Peter Schröder,et al.  Interactive multiresolution mesh editing , 1997, SIGGRAPH.

[22]  Thomas J. R. Hughes,et al.  Truncated hierarchical Catmull–Clark subdivision with local refinement , 2015 .

[23]  Alfio Borzì,et al.  Multigrid Shape Optimization Governed by Elliptic PDEs , 2013, SIAM J. Control. Optim..

[24]  R. Haftka,et al.  Structural shape optimization — a survey , 1986 .

[25]  Eitan Grinspun,et al.  CHARMS: a simple framework for adaptive simulation , 2002, ACM Trans. Graph..

[26]  Kai-Uwe Bletzinger,et al.  A consistent frame for sensitivity filtering and the vertex assigned morphing of optimal shape , 2014, Structural and Multidisciplinary Optimization.

[27]  Tony DeRose,et al.  Multiresolution analysis for surfaces of arbitrary topological type , 1997, TOGS.

[28]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[29]  Edgardo Taroco,et al.  Topological-Shape Sensitivity Method: Theory and Applications , 2006 .

[30]  Fehmi Cirak,et al.  Subdivision-stabilised immersed b-spline finite elements for moving boundary flows , 2012 .

[31]  Xiaocong Han,et al.  An adaptive geometry parametrization for aerodynamic shape optimization , 2014 .

[32]  Ronald Maier,et al.  Integrated Modeling , 2011, Encyclopedia of Knowledge Management.

[33]  Richard F. Riesenfeld,et al.  A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  O. Sigmund,et al.  Topology optimization approaches , 2013, Structural and Multidisciplinary Optimization.

[35]  R. Feijóo,et al.  Topological sensitivity analysis , 2003 .

[36]  Niels Olhoff,et al.  On CAD-integrated structural topology and design optimization , 1991 .

[37]  Jörg Peters,et al.  Subdivision Surfaces , 2002, Handbook of Computer Aided Geometric Design.

[38]  M. Bendsøe,et al.  A geometry projection method for shape optimization , 2004 .

[39]  V. Kobelev,et al.  Bubble method for topology and shape optimization of structures , 1994 .

[40]  Raúl A. Feijóo,et al.  Topological Sensitivity Analysis for Three-dimensional Linear Elasticity Problem , 2007 .

[41]  Jean-Antoine Désidéri,et al.  Multilevel strategies for parametric shape optimization in aerodynamics , 2008 .

[42]  Roland Wüchner,et al.  Optimal shapes of mechanically motivated surfaces , 2010 .

[43]  Erik Steen Kristensen,et al.  On the optimum shape of fillets in plates subjected to multiple in‐plane loading cases , 1976 .

[44]  Lexing Ying,et al.  Nonmanifold subdivision , 2001, Proceedings Visualization, 2001. VIS '01..

[45]  M. Bendsøe,et al.  Topology Optimization: "Theory, Methods, And Applications" , 2011 .

[46]  R. Schmidt,et al.  Isogeometric shape optimization of shells using semi-analytical sensitivity analysis and sensitivity weighting , 2014 .

[47]  Olaf Steinbach,et al.  Boundary element based multiresolution shape optimisation in electrostatics , 2015, J. Comput. Phys..

[48]  Fehmi Cirak,et al.  A fixed‐grid b‐spline finite element technique for fluid–structure interaction , 2014 .

[49]  John A. Evans,et al.  An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .

[50]  Niels Olhoff,et al.  Topology optimization of continuum structures: A review* , 2001 .

[51]  Fehmi Cirak,et al.  An immersed finite element method with integral equation correction , 2011 .

[52]  Yury Grabovsky,et al.  The cavity of the optimal shape under the shear stresses , 1998 .

[53]  David Salesin,et al.  Multiresolution curves , 1994, SIGGRAPH.

[54]  M. Sabin,et al.  NURBS with extraordinary points: high-degree, non-uniform, rational subdivision schemes , 2009, SIGGRAPH 2009.

[55]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[56]  Fehmi Cirak,et al.  Subdivision shells with exact boundary control and non‐manifold geometry , 2011 .

[57]  M. Delfour,et al.  Shapes and Geometries: Analysis, Differential Calculus, and Optimization , 1987 .

[58]  Gerhard A. Holzapfel,et al.  Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science , 2000 .

[59]  Pierre Alliez,et al.  Polygon Mesh Processing , 2010 .

[60]  Bruno Lévy,et al.  Quad‐Mesh Generation and Processing: A Survey , 2013, Comput. Graph. Forum.

[61]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[62]  G. Allaire,et al.  Structural optimization using sensitivity analysis and a level-set method , 2004 .

[63]  Ekkehard Ramm,et al.  Efficient modeling in shape optimal design , 1991 .

[64]  Jon Trevelyan,et al.  Evolutionary structural optimisation based on boundary representation of NURBS. Part I: 2D algorithms , 2005 .

[65]  W. Boehm,et al.  Bezier and B-Spline Techniques , 2002 .

[66]  Fehmi Cirak,et al.  Immersed b-spline (i-spline) finite element method for geometrically complex domains , 2011 .

[67]  K. Höllig Finite element methods with B-splines , 1987 .

[68]  Philippe Guillaume,et al.  The Topological Asymptotic for PDE Systems: The Elasticity Case , 2000, SIAM J. Control. Optim..

[69]  W. Wall,et al.  Isogeometric structural shape optimization , 2008 .

[70]  J. Zolésio,et al.  Introduction to shape optimization : shape sensitivity analysis , 1992 .

[71]  V. Braibant,et al.  Shape optimal design using B-splines , 1984 .

[72]  Chau H. Le,et al.  A gradient-based, parameter-free approach to shape optimization , 2011 .