Preference Elicitation for DCOPs

Distributed Constraint Optimization Problems (DCOPs) offer a powerful approach for the description and resolution of cooperative multi-agent problems. In this model, a group of agents coordinate their actions to optimize a global objective function, taking into account their preferences or constraints. A core limitation of this model is the assumption that the preferences of all agents or the costs of all constraints are specified a priori. Unfortunately, this assumption does not hold in a number of application domains where preferences or constraints must be elicited from the users. One of such domains is the Smart Home Device Scheduling (SHDS) problem. Motivated by this limitation, we make the following contributions in this paper: (1) We propose a general model for preference elicitation in DCOPs; (2) We propose several heuristics to elicit preferences in DCOPs; and (3) We empirically evaluate the effect of these heuristics on random binary DCOPs as well as SHDS problems.

[1]  Wei-Min Shen,et al.  Distributed constraint optimization for multiagent systems , 2003 .

[2]  Boi Faltings,et al.  DUCT: An Upper Confidence Bound Approach to Distributed Constraint Optimization Problems , 2012, AAAI.

[3]  Sarvapali D. Ramchurn,et al.  Optimal decentralised dispatch of embedded generation in the smart grid , 2012, AAMAS.

[4]  Makoto Yokoo,et al.  Adopt: asynchronous distributed constraint optimization with quality guarantees , 2005, Artif. Intell..

[5]  Amnon Meisels,et al.  Concurrent forward bounding for distributed constraint optimization problems , 2012, Artif. Intell..

[6]  Ariel D. Procaccia,et al.  Strategyproof Classification with Shared Inputs , 2009, IJCAI.

[7]  Enrico Pontelli,et al.  ASP-DPOP: solving distributed constraint optimization problems with logic programming , 2014, AAMAS.

[8]  Enrico Pontelli,et al.  A Multiagent System Approach to Scheduling Devices in Smart Homes , 2017, AAMAS.

[9]  Makoto Yokoo,et al.  Distributed on-Line Multi-Agent Optimization under Uncertainty: Balancing Exploration and Exploitation , 2011, Adv. Complex Syst..

[10]  Toby Walsh,et al.  Elicitation Strategies for Fuzzy Constraint Problems with Missing Preferences: Algorithms and Experimental Studies , 2008, CP.

[11]  Steven Okamoto,et al.  Distributed constraint optimization for teams of mobile sensing agents , 2014, Autonomous Agents and Multi-Agent Systems.

[12]  Enrico Pontelli,et al.  ER-DCOPs: A Framework for Distributed Constraint Optimization with Uncertainty in Constraint Utilities , 2016, AAMAS.

[13]  Nicholas R. Jennings,et al.  Decentralised coordination of low-power embedded devices using the max-sum algorithm , 2008, AAMAS.

[14]  Enrico Pontelli,et al.  A Distributed Constraint Optimization (DCOP) Approach to the Economic Dispatch with Demand Response , 2017, AAMAS.

[15]  Darius Braziunas,et al.  Computational Approaches to Preference Elicitation , 2006 .

[16]  Leslie Pack Kaelbling,et al.  Planning and Acting in Partially Observable Stochastic Domains , 1998, Artif. Intell..

[17]  Craig Boutilier,et al.  Local Utility Elicitation in GAI Models , 2005, UAI.

[18]  Ben Anderson,et al.  Electricity consumption and household characteristics: Implications for census-taking in a smart metered future , 2017, Comput. Environ. Urban Syst..

[19]  Meritxell Vinyals,et al.  Constructing a unifying theory of dynamic programming DCOP algorithms via the generalized distributive law , 2010, Autonomous Agents and Multi-Agent Systems.

[20]  J. Zico Kolter,et al.  REDD : A Public Data Set for Energy Disaggregation Research , 2011 .

[21]  Boi Faltings,et al.  Incentive Compatible Multiagent Constraint Optimization , 2005, WINE.

[22]  Fahiem Bacchus,et al.  Utility Independence in a Qualitative Decision Theory , 1996, KR.

[23]  Craig Boutilier,et al.  A POMDP formulation of preference elicitation problems , 2002, AAAI/IAAI.

[24]  Hoong Chuin Lau,et al.  Distributed Gibbs: a memory-bounded sampling-based DCOP algorithm , 2013, AAMAS.

[25]  Imrich Chlamtac,et al.  Internet of things: Vision, applications and research challenges , 2012, Ad Hoc Networks.

[26]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[27]  Steven Okamoto,et al.  Explorative anytime local search for distributed constraint optimization , 2014, Artif. Intell..

[28]  Hoong Chuin Lau,et al.  Decentralized Multi-Agent Reinforcement Learning in Average-Reward Dynamic DCOPs , 2014, AAAI.

[29]  Enrico Pontelli,et al.  Distributed Constraint Optimization Problems and Applications: A Survey , 2016, J. Artif. Intell. Res..

[30]  Katsutoshi Hirayama,et al.  DeQED: an efficient divide-and-coordinate algorithm for DCOP , 2013, AAMAS.

[31]  Makoto Yokoo,et al.  Distributed Problem Solving , 2012, AI Mag..

[32]  Peter J. Stuckey,et al.  The Evolving World of MiniZinc , 2009 .

[33]  Slim Abdennadher,et al.  Nurse Scheduling using Constraint Logic Programming , 1999, AAAI/IAAI.

[34]  Robert M. Haralick,et al.  Structural Descriptions and Inexact Matching , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Milind Tambe,et al.  Distributed Algorithms for DCOP: A Graphical-Game-Based Approach , 2004, PDCS.

[36]  Jukka Paatero,et al.  A model for generating household electricity load profiles , 2006 .

[37]  Craig Boutilier,et al.  Regret-based Utility Elicitation in Constraint-based Decision Problems , 2005, IJCAI.

[38]  Boi Faltings,et al.  A Scalable Method for Multiagent Constraint Optimization , 2005, IJCAI.

[39]  Toby Walsh,et al.  Preferences in Constraint Satisfaction and Optimization , 2008, AI Mag..

[40]  Enrico Pontelli,et al.  Multi-Variable Agent decomposition for DCOPs , 2016, AAAI 2016.

[41]  Nicholas R. Jennings,et al.  DCOPs and bandits: exploration and exploitation in decentralised coordination , 2012, AAMAS.

[42]  Makoto Yokoo,et al.  Coalition Structure Generation based on Distributed Constraint Optimization , 2010, AAAI.

[43]  Sven Koenig,et al.  BnB-ADOPT: an asynchronous branch-and-bound DCOP algorithm , 2008, AAMAS.

[44]  Javier Larrosa,et al.  Node and arc consistency in weighted CSP , 2002, AAAI/IAAI.

[45]  Judy Goldsmith,et al.  Preference Handling for Artificial Intelligence , 2008, AI Mag..

[46]  Leandro Magatão,et al.  Enhancing Supply Chain Decisions Using Constraint Programming: A Case Study , 2007, MICAI.

[47]  Feng Wu,et al.  Regret-Based Multi-Agent Coordination with Uncertain Task Rewards , 2014, AAAI.

[48]  Enrico Pontelli,et al.  A Dynamic Programming-Based MCMC Framework for Solving DCOPs with GPUs , 2016, CP.