Critical Design Parameters To Prevent Gas Invasion During Cementing Operations
暂无分享,去创建一个
The invasion of gas into cement slurries has been studied using a simulated wellbore model. Results indicate that a cement slurry loses its ability to transmit pressure with time. This loss is caused by gel structure development due, in part, to cement hydration and fluid loss. Gas flow can be initiated when the pressure transmitted by the fluid column becomes less than the gas pressure. The relationship between gas flow and this pressure differential has been determined for several cement systems. This relationship has been termed ''gas conductivity'' and is a measure of gas permeability of cement slurries prior to the development of compressive strength. Two different design approaches were investigated in order to reduce gas conductivities in cement slurries. One involves inhibition of gas flow by the deposition of an impermeable cement filter cake against the formation. The second design incorporates a modified cement slurry which interacts with incoming gas to form an impermeable barrier in the cement pore spaces, thereby inhibiting further gas flow. The use of this ''gas-induced'' cement barrier to prevent gas flow has been successfully applied in Canada, Europe and the United States. Several case histories are discussed.