A Hybrid High-Order method for the incompressible Navier-Stokes problem robust for large irrotational body forces

Abstract We develop a novel Hybrid High-Order method for the incompressible Navier–Stokes problem robust for large irrotational body forces. The key ingredients of the method are discrete versions of the body force and convective contributions in the momentum equation formulated in terms of a globally divergence-free velocity reconstruction. Two key properties are mimicked at the discrete level, namely the invariance of the velocity with respect to irrotational body forces and the non-dissipativity of the convective term. A full convergence analysis is carried out, showing optimal orders of convergence under a smallness condition involving only the solenoidal part of the body force. The performance of the method is illustrated by a complete panel of numerical tests, including comparisons that highlight the benefits with respect to more standard formulations.

[1]  Antonio Huerta,et al.  Hybridizable Discontinuous Galerkin with degree adaptivity for the incompressible Navier-Stokes equations ✩ , 2014 .

[2]  Sander Rhebergen,et al.  A space-time hybridizable discontinuous Galerkin method for incompressible flows on deforming domains , 2012, J. Comput. Phys..

[3]  Alexander Linke,et al.  Pressure-robustness and discrete Helmholtz projectors in mixed finite element methods for the incompressible Navier--Stokes equations , 2016 .

[4]  T. Dupont,et al.  Polynomial approximation of functions in Sobolev spaces , 1980 .

[5]  L. Beirao da Veiga,et al.  The Stokes complex for Virtual Elements in three dimensions , 2019, Mathematical Models and Methods in Applied Sciences.

[6]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[7]  Alexander Linke,et al.  On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime , 2014 .

[8]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[9]  C. Kelley,et al.  Convergence Analysis of Pseudo-Transient Continuation , 1998 .

[10]  U. Ghia,et al.  High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .

[11]  Bernardo Cockburn,et al.  Hybridized globally divergence-free LDG methods. Part I: The Stokes problem , 2005, Math. Comput..

[12]  Alexander Linke,et al.  On velocity errors due to irrotational forces in the Navier-Stokes momentum balance , 2016, J. Comput. Phys..

[13]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[14]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[15]  Sander Rhebergen,et al.  A Hybridizable Discontinuous Galerkin Method for the Navier–Stokes Equations with Pointwise Divergence-Free Velocity Field , 2017, Journal of Scientific Computing.

[16]  Naveed Ahmed,et al.  Towards Pressure-Robust Mixed Methods for the Incompressible Navier–Stokes Equations , 2017, Comput. Methods Appl. Math..

[17]  B. V. Leer,et al.  Experiments with implicit upwind methods for the Euler equations , 1985 .

[18]  Jérôme Droniou,et al.  A Hybrid High-Order method for Leray-Lions elliptic equations on general meshes , 2015, Math. Comput..

[19]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[20]  Weifeng Qiu,et al.  A superconvergent HDG method for the Incompressible Navier-Stokes Equations on general polyhedral meshes , 2015, 1506.07543.

[21]  Weifeng Qiu,et al.  Analysis of a hybridizable discontinuous Galerkin method for the steady-state incompressible Navier-Stokes equations , 2016, Math. Comput..

[22]  Issei Oikawa,et al.  A Hybridized Discontinuous Galerkin Method with Reduced Stabilization , 2014, Journal of Scientific Computing.

[23]  Alexandre Ern,et al.  Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods , 2016 .

[24]  Jérôme Droniou,et al.  A Hybrid High-Order method for the incompressible Navier-Stokes equations based on Temam's device , 2019, J. Comput. Phys..

[25]  Bernardo Cockburn,et al.  A Comparison of HDG Methods for Stokes Flow , 2010, J. Sci. Comput..

[26]  Christoph Lehrenfeld,et al.  High order exactly divergence-free Hybrid Discontinuous Galerkin Methods for unsteady incompressible flows , 2015, ArXiv.

[27]  Daniele Antonio Di Pietro,et al.  Numerical Methods for PDEs , 2018 .

[28]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[29]  Long Chen,et al.  A Divergence Free Weak Virtual Element Method for the Stokes Problem on Polytopal Meshes , 2018, J. Sci. Comput..

[30]  Garth N. Wells,et al.  A Galerkin interface stabilisation method for the advection–diffusion and incompressible Navier–Stokes equations , 2007 .

[31]  Alexandre Ern,et al.  A discontinuous skeletal method for the viscosity-dependent Stokes problem , 2015 .

[32]  Stella Krell,et al.  A Hybrid High-Order Method for the Steady Incompressible Navier–Stokes Problem , 2016, J. Sci. Comput..

[33]  D. Arnold Finite Element Exterior Calculus , 2018 .

[34]  E. Erturk,et al.  Numerical solutions of 2‐D steady incompressible driven cavity flow at high Reynolds numbers , 2004, ArXiv.

[35]  Wolfgang Fichtner,et al.  PARDISO: a high-performance serial and parallel sparse linear solver in semiconductor device simulation , 2001, Future Gener. Comput. Syst..

[36]  Bernardo Cockburn,et al.  Analysis of HDG Methods for Oseen Equations , 2013, J. Sci. Comput..

[37]  L. Kovasznay Laminar flow behind a two-dimensional grid , 1948 .

[38]  Jérôme Droniou,et al.  The Hybrid High-Order Method for Polytopal Meshes , 2020 .

[39]  Giuseppe Vacca,et al.  Virtual Elements for the Navier-Stokes Problem on Polygonal Meshes , 2017, SIAM J. Numer. Anal..

[40]  Pierre F. J. Lermusiaux,et al.  Hybridizable discontinuous Galerkin projection methods for Navier-Stokes and Boussinesq equations , 2016, J. Comput. Phys..

[41]  L. Beirao da Veiga,et al.  Divergence free Virtual Elements for the Stokes problem on polygonal meshes , 2015, 1510.01655.

[42]  G. Gatica A Simple Introduction to the Mixed Finite Element Method: Theory and Applications , 2014 .

[43]  Volker John,et al.  Finite Element Methods for Incompressible Flow Problems , 2016 .