A New Boundary Condition for Three-Dimensional Lattice Boltzmann Simulations of Capillary Filling in Rough Micro-Channels

A new boundary condition, aimed at inhibiting near-wall condensation effects in lattice Boltzmann simulations of capillary flows in micro-corrugated channels, is introduced. The new boundary condition is validated against analytical solutions for smooth channels and demonstrated for the case of three-dimensional microflows over randomly corrugated walls. PACS: 47.11.-j, 47.55.Ca, 47.61.-k

[1]  Richard Lucas,et al.  Ueber das Zeitgesetz des kapillaren Aufstiegs von Flüssigkeiten , 1918 .

[2]  E. W. Washburn The Dynamics of Capillary Flow , 1921 .

[3]  E. B. Dussan,et al.  LIQUIDS ON SOLID SURFACES: STATIC AND DYNAMIC CONTACT LINES , 1979 .

[4]  R. Benzi,et al.  The lattice Boltzmann equation: theory and applications , 1992 .

[5]  Shan,et al.  Lattice Boltzmann model for simulating flows with multiple phases and components. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[6]  S. Herminghaus,et al.  Wetting: Statics and dynamics , 1997 .

[7]  Sauro Succi,et al.  Massively Parallel Lattice-Boltzmann Simulation of Turbulent Channel Flow , 1997 .

[8]  Sauro Succi,et al.  Mesoscopic modeling of slip motion at fluid-solid interfaces with heterogeneous catalysis. , 2002, Physical review letters.

[9]  Chang Shu,et al.  Application of lattice Boltzmann method to simulate microchannel flows , 2002 .

[10]  Lydéric Bocquet,et al.  Low-friction flows of liquid at nanopatterned interfaces , 2003, Nature materials.

[11]  K. Hosokawa,et al.  Interface motion of capillary-driven flow in rectangular microchannel. , 2004, Journal of colloid and interface science.

[12]  J. Eggers Hydrodynamic theory of forced dewetting. , 2003, Physical review letters.

[13]  Jens Harting,et al.  Lattice Boltzmann simulations of apparent slip in hydrophobic microchannels , 2006 .

[14]  F. Toschi,et al.  Surface roughness-hydrophobicity coupling in microchannel and nanochannel flows. , 2006, Physical review letters.

[15]  Sauro Succi,et al.  Capillary filling using lattice Boltzmann equations: The case of multi-phase flows , 2007, 0707.0945.

[16]  J. Harting,et al.  Slip flow over structured surfaces with entrapped microbubbles. , 2008, Physical review letters.

[17]  A. Dupuis,et al.  The collapse transition on superhydrophobic surfaces , 2008, 0803.1564.

[18]  Sauro Succi,et al.  Lattice Boltzmann simulations of capillary filling: Finite vapour density effects , 2008, 0801.4223.

[19]  Sauro Succi,et al.  Lattice Boltzmann simulations of phase-separating flows at large density ratios: the case of doubly-attractive pseudo-potentials , 2010 .