Moore-Penrose inverse of incidence matrices

We present explicit formulas for Moore-Penrose inverses of some families of set inclusion matrices arising from sets, vector spaces, and designs.

[1]  J. Tariboon Quantum Calculus , 2020, The Journal of King Mongkut's University of Technology North Bangkok.

[2]  M. Sigrist,et al.  Dimensional crossover in Sr2RuO4 within a slave-boson mean-field theory , 2008, 0812.3731.

[3]  S. Ruiz An Algebraic Identity Leading to Wilson Theorem , 2004, math/0406086.

[4]  David B. Chandler,et al.  The invariant factors of the incidence matrices of points and subspaces in PG(n,q) and AG(n,q) , 2003, math/0312506.

[5]  Ravindra B. Bapat,et al.  Moore–Penrose inverse of set inclusion matrices , 2000 .

[6]  Richard M. Wilson,et al.  A Diagonal Form for the Incidence Matrices of t-Subsets vs.k-Subsets , 1990, Eur. J. Comb..

[7]  Peter Frankl,et al.  Intersection theorems and mod p rank of inclusion matrices , 1990, J. Comb. Theory, Ser. A.

[8]  Richard M. Wilson,et al.  Incidence matrices of t-designs , 1982 .

[9]  L. Weisner Some properties of prime-power groups , 1935 .

[10]  L. Weisner,et al.  Abstract theory of inversion of finite series , 1935 .

[11]  M. Farrokhi FACTORIZATION NUMBERS OF FINITE ABELIAN GROUPS , 2013 .

[12]  Y. Takane,et al.  Generalized Inverse Matrices , 2011 .

[13]  G. Rota On the Foundations of Combinatorial Theory , 2009 .

[14]  G. Walter,et al.  Graphs and Matrices , 1999 .

[15]  C. D. Meyer,et al.  Generalized inverses of linear transformations , 1979 .

[16]  Adi Ben-Israel,et al.  Generalized inverses: theory and applications , 1974 .

[17]  N. Hamada,et al.  The rank of the incidence matrix of points and $d$-flats in finite geometries , 1968 .

[18]  G. Rota On the foundations of combinatorial theory I. Theory of Möbius Functions , 1964 .

[19]  P. Hall,et al.  THE EULERIAN FUNCTIONS OF A GROUP , 1936 .