Moore-Penrose inverse of incidence matrices
暂无分享,去创建一个
[1] J. Tariboon. Quantum Calculus , 2020, The Journal of King Mongkut's University of Technology North Bangkok.
[2] M. Sigrist,et al. Dimensional crossover in Sr2RuO4 within a slave-boson mean-field theory , 2008, 0812.3731.
[3] S. Ruiz. An Algebraic Identity Leading to Wilson Theorem , 2004, math/0406086.
[4] David B. Chandler,et al. The invariant factors of the incidence matrices of points and subspaces in PG(n,q) and AG(n,q) , 2003, math/0312506.
[5] Ravindra B. Bapat,et al. Moore–Penrose inverse of set inclusion matrices , 2000 .
[6] Richard M. Wilson,et al. A Diagonal Form for the Incidence Matrices of t-Subsets vs.k-Subsets , 1990, Eur. J. Comb..
[7] Peter Frankl,et al. Intersection theorems and mod p rank of inclusion matrices , 1990, J. Comb. Theory, Ser. A.
[8] Richard M. Wilson,et al. Incidence matrices of t-designs , 1982 .
[9] L. Weisner. Some properties of prime-power groups , 1935 .
[10] L. Weisner,et al. Abstract theory of inversion of finite series , 1935 .
[11] M. Farrokhi. FACTORIZATION NUMBERS OF FINITE ABELIAN GROUPS , 2013 .
[12] Y. Takane,et al. Generalized Inverse Matrices , 2011 .
[13] G. Rota. On the Foundations of Combinatorial Theory , 2009 .
[14] G. Walter,et al. Graphs and Matrices , 1999 .
[15] C. D. Meyer,et al. Generalized inverses of linear transformations , 1979 .
[16] Adi Ben-Israel,et al. Generalized inverses: theory and applications , 1974 .
[17] N. Hamada,et al. The rank of the incidence matrix of points and $d$-flats in finite geometries , 1968 .
[18] G. Rota. On the foundations of combinatorial theory I. Theory of Möbius Functions , 1964 .
[19] P. Hall,et al. THE EULERIAN FUNCTIONS OF A GROUP , 1936 .