Unsupervised detection of decoupled subspaces: Many-body scars and beyond

Highly excited eigenstates of quantum many-body systems are typically featureless thermal states. Some systems, however, possess a small number of special, low-entanglement eigenstates known as quantum scars. We introduce a quantum-inspired machine learning platform based on a Quantum Variational Autoencoder (QVAE) that detects families of scar states in spectra of many-body systems. Unlike a classical autoencoder, QVAE performs a parametrized unitary operation, allowing us to compress a single eigenstate into a smaller number of qubits. We demonstrate that the autoencoder trained on a scar state is able to detect the whole family of scar states sharing common features with the input state. We identify families of quantum many-body scars in the PXP model beyond the Z 2 and Z 3 families and find dynamically decoupled subspaces in the Hilbert space of disordered, interacting spin ladder model. The possibility of an automatic detection of subspaces of scar states opens new pathways in studies of models with a weak breakdown of ergodicity and fragmented Hilbert spaces.

[1]  Kieran Bull,et al.  Hypergrid subgraphs and the origin of scarred quantum walks in many-body Hilbert space , 2021, Physical Review B.

[2]  G. Kells,et al.  Extreme many-body scarring in a quantum spin chain via weak dynamical constraints , 2021, Physical Review B.

[3]  Quantum local random networks and the statistical robustness of quantum scars , 2021, 2107.00884.

[4]  Hao Li,et al.  Phase-Programmable Gaussian Boson Sampling Using Stimulated Squeezed Light. , 2021, Physical review letters.

[5]  Joana Fraxanet,et al.  Variational quantum anomaly detection: Unsupervised mapping of phase diagrams on a physical quantum computer , 2021, Physical Review Research.

[6]  Patrick J. Coles,et al.  Cost function dependent barren plateaus in shallow parametrized quantum circuits , 2021, Nature Communications.

[7]  Proposal for Realizing Quantum Scars in the Tilted 1D Fermi-Hubbard Model. , 2021, Physical review letters.

[8]  M. Cerezo,et al.  Variational quantum algorithms , 2020, Nature Reviews Physics.

[9]  Maksym Serbyn,et al.  Quantum many-body scars and weak breaking of ergodicity , 2020, Nature Physics.

[10]  Carlos Bravo-Prieto,et al.  Quantum autoencoders with enhanced data encoding , 2020, Mach. Learn. Sci. Technol..

[11]  N. Yamamoto,et al.  Expressibility of the alternating layered ansatz for quantum computation , 2020, Quantum.

[12]  R. Nandkishore,et al.  Thermalization and Its Absence within Krylov Subspaces of a Constrained Hamiltonian , 2019, Memorial Volume for Shoucheng Zhang.

[13]  Xin Wang,et al.  Noise-Assisted Quantum Autoencoder , 2020, 2012.08331.

[14]  M. Dalmonte,et al.  Exact many-body scars and their stability in constrained quantum chains , 2020, 2011.08218.

[15]  A. Chandran,et al.  From tunnels to towers: Quantum scars from Lie algebras and q -deformed Lie algebras , 2020, Physical Review Research.

[16]  Kieran Bull,et al.  Correspondence Principle for Many-Body Scars in Ultracold Rydberg Atoms , 2020, 2006.13207.

[17]  C. J. Turner,et al.  Stabilizing two-dimensional quantum scars by deformation and synchronization , 2020, 2003.02825.

[18]  N. Regnault,et al.  Large classes of quantum scarred Hamiltonians from matrix product states , 2020, Physical Review B.

[19]  A. Pal,et al.  Exact three-colored quantum scars from geometric frustration , 2020, 2002.08970.

[20]  F. Mintert,et al.  Quantum Many-Body Scars in Optical Lattices. , 2020, Physical review letters.

[21]  T. Lahaye,et al.  Many-body physics with individually controlled Rydberg atoms , 2020, 2002.07413.

[22]  Kieran Bull,et al.  Quantum scars as embeddings of weakly broken Lie algebra representations , 2020, Physical Review B.

[23]  Cheng-Ju Lin,et al.  Unified structure for exact towers of scar states in the Affleck-Kennedy-Lieb-Tasaki and other models , 2020, 2001.03839.

[24]  M. Dalmonte,et al.  Real Time Dynamics and Confinement in the Zn Schwinger-Weyl lattice model for 1+1 QED , 2019, Quantum.

[25]  Y. Li,et al.  Variational Quantum Simulation of General Processes. , 2018, Physical review letters.

[26]  Shenglong Xu,et al.  Quantum many-body scars from magnon condensation , 2019 .

[27]  M. Schecter,et al.  Weak Ergodicity Breaking and Quantum Many-Body Scars in Spin-1 XY Magnets. , 2019, Physical review letters.

[28]  Peter D. Johnson,et al.  Expressibility and Entangling Capability of Parameterized Quantum Circuits for Hybrid Quantum‐Classical Algorithms , 2019, Advanced Quantum Technologies.

[29]  M. Dalmonte,et al.  Lattice Gauge Theories and String Dynamics in Rydberg Atom Quantum Simulators , 2019, Physical Review X.

[30]  Ying Li,et al.  Theory of variational quantum simulation , 2018, Quantum.

[31]  M. Lukin,et al.  Emergent SU(2) Dynamics and Perfect Quantum Many-Body Scars. , 2018, Physical review letters.

[32]  M. Znidaric,et al.  Exact Localized and Ballistic Eigenstates in Disordered Chaotic Spin Ladders and the Fermi-Hubbard Model. , 2018, Physical review letters.

[33]  Geoff J Pryde,et al.  Experimental Realization of a Quantum Autoencoder: The Compression of Qutrits via Machine Learning. , 2018, Physical review letters.

[34]  Cheng-Ju Lin,et al.  Exact Quantum Many-Body Scar States in the Rydberg-Blockaded Atom Chain. , 2018, Physical review letters.

[35]  C. Laumann,et al.  Signatures of integrability in the dynamics of Rydberg-blockaded chains , 2018, Physical Review B.

[36]  Mikhail D Lukin,et al.  Periodic Orbits, Entanglement, and Quantum Many-Body Scars in Constrained Models: Matrix Product State Approach. , 2018, Physical review letters.

[37]  Xiao Yuan,et al.  Variational quantum algorithms for discovering Hamiltonian spectra , 2018, Physical Review A.

[38]  Immanuel Bloch,et al.  Colloquium : Many-body localization, thermalization, and entanglement , 2018, Reviews of Modern Physics.

[39]  M. Bukov,et al.  QuSpin: a Python package for dynamics and exact diagonalisation of quantum many body systems. Part II: bosons, fermions and higher spins , 2018, SciPost Physics.

[40]  W. W. Ho,et al.  Efficient variational simulation of non-trivial quantum states , 2018, SciPost Physics.

[41]  D. Abanin Many-body localization, thermalization, and entanglement , 2019 .

[42]  N. Regnault,et al.  Entanglement of exact excited states of Affleck-Kennedy-Lieb-Tasaki models: Exact results, many-body scars, and violation of the strong eigenstate thermalization hypothesis , 2018, Physical Review B.

[43]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[44]  C. J. Turner,et al.  Quantum scarred eigenstates in a Rydberg atom chain: Entanglement, breakdown of thermalization, and stability to perturbations , 2018, Physical Review B.

[45]  Ryan Babbush,et al.  Barren plateaus in quantum neural network training landscapes , 2018, Nature Communications.

[46]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[47]  Z. Papic,et al.  Weak ergodicity breaking from quantum many-body scars , 2017, Nature Physics.

[48]  F. Alet,et al.  Many-body localization: An introduction and selected topics , 2017, Comptes Rendus Physique.

[49]  N. Regnault,et al.  Exact excited states of nonintegrable models , 2017, Physical Review B.

[50]  M. Lukin,et al.  Probing many-body dynamics on a 51-atom quantum simulator , 2017, Nature.

[51]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[52]  Takashi Mori,et al.  Systematic Construction of Counterexamples to the Eigenstate Thermalization Hypothesis. , 2017, Physical review letters.

[53]  Alán Aspuru-Guzik,et al.  Quantum autoencoders for efficient compression of quantum data , 2016, 1612.02806.

[54]  Ying Li,et al.  Efficient Variational Quantum Simulator Incorporating Active Error Minimization , 2016, 1611.09301.

[55]  M. Bukov,et al.  QuSpin: a Python Package for Dynamics and Exact Diagonalisation of Quantum Many Body Systems part I: spin chains , 2016, 1610.03042.

[56]  Frank Pollmann,et al.  Obtaining Highly Excited Eigenstates of Many-Body Localized Hamiltonians by the Density Matrix Renormalization Group Approach. , 2015, Physical review letters.

[57]  Alán Aspuru-Guzik,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[58]  M. Rigol,et al.  From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics , 2015, 1509.06411.

[59]  Ryan Babbush,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[60]  Hod Lipson,et al.  Understanding Neural Networks Through Deep Visualization , 2015, ArXiv.

[61]  R. Nandkishore,et al.  Many-Body Localization and Thermalization in Quantum Statistical Mechanics , 2014, 1404.0686.

[62]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[63]  H. Katsura,et al.  Interacting Fibonacci anyons in a Rydberg gas , 2012, 1204.0903.

[64]  W. Marsden I and J , 2012 .

[65]  Pascal Vincent,et al.  Visualizing Higher-Layer Features of a Deep Network , 2009 .

[66]  D. Basko,et al.  Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states , 2005, cond-mat/0506617.

[67]  S. Nee Beautiful models , 2006, Nature.

[68]  A. Mirlin,et al.  Interacting electrons in disordered wires: Anderson localization and low-T transport. , 2005, Physical review letters.

[69]  M. Batchelor Beautiful Models: 70 Years of Exactly Solved Quantum Many-Body Problems , 2005 .

[70]  James C. Spall,et al.  AN OVERVIEW OF THE SIMULTANEOUS PERTURBATION METHOD FOR EFFICIENT OPTIMIZATION , 1998 .

[71]  J. Spall Accelerated second-order stochastic optimization using only function measurements , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[72]  Deborah Silver,et al.  Feature Visualization , 1994, Scientific Visualization.

[73]  M. Srednicki,et al.  Chaos and quantum thermalization. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[74]  Deutsch,et al.  Quantum statistical mechanics in a closed system. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[75]  Gay,et al.  Scars of symmetries in quantum chaos. , 1987, Physical review letters.

[76]  C. V. L. Charlier,et al.  Periodic Orbits , 1898, Nature.