Magnetic nanoparticles: a strategy to target the choroidal layer in the posterior segment of the eye

[1]  M. Orger,et al.  Zebrafish , 2019, Methods in Molecular Biology.

[2]  M. Furuno,et al.  CCT2 Mutations Evoke Leber Congenital Amaurosis due to Chaperone Complex Instability , 2016, Scientific Reports.

[3]  Y. Nishimura,et al.  Establishment of a drug evaluation model against light-induced retinal degeneration using adult pigmented zebrafish. , 2016, Journal of pharmacological sciences.

[4]  Seok-Hyung Kim,et al.  Six3 regulates optic nerve development via multiple mechanisms , 2016, Scientific Reports.

[5]  E. Sigler,et al.  Ocular histoplasmosis syndrome. , 2015, Survey of ophthalmology.

[6]  L. el Matri,et al.  Current and emerging treatment options for myopic choroidal neovascularization , 2015, Clinical ophthalmology.

[7]  Xian Jun Loh,et al.  Effective near-infrared photodynamic therapy assisted by upconversion nanoparticles conjugated with photosensitizers , 2015, International journal of nanomedicine.

[8]  Hua Ai,et al.  Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: design considerations and clinical applications. , 2014, Current opinion in pharmacology.

[9]  D. Higgins,et al.  Genes and signaling networks regulated during zebrafish optic vesicle morphogenesis , 2014, BMC Genomics.

[10]  R. Șerban,et al.  Posterior segment ocular manifestations of HIV/AIDS patients , 2014, Journal of medicine and life.

[11]  Jian-xing Ma,et al.  Nanoparticle-Assisted Targeted Delivery of Eye-Specific Genes to Eyes Significantly Improves the Vision of Blind Mice In Vivo , 2014, Nano letters.

[12]  L. Iannetti,et al.  Management of Uveitis-Related Choroidal Neovascularization: From the Pathogenesis to the Therapy , 2014, Journal of ophthalmology.

[13]  Marcus Ang,et al.  Sustained drug release in nanomedicine: a long-acting nanocarrier-based formulation for glaucoma. , 2014, ACS nano.

[14]  A. Cuschieri,et al.  Magnetic Nanoparticles as Intraocular Drug Delivery System to Target Retinal Pigmented Epithelium (RPE) , 2014, International journal of molecular sciences.

[15]  V. Enzmann,et al.  Characteristics of Rod Regeneration in a Novel Zebrafish Retinal Degeneration Model Using N-Methyl-N-Nitrosourea (MNU) , 2013, PloS one.

[16]  Z. Gu,et al.  Superparamagnetic Iron Oxide Nanoparticles as MRI contrast agents for Non-invasive Stem Cell Labeling and Tracking , 2013, Theranostics.

[17]  Shannon M. Conley,et al.  S/MAR-containing DNA nanoparticles promote persistent RPE gene expression and improvement in RPE65-associated LCA. , 2013, Human molecular genetics.

[18]  J. Roider,et al.  Regulation of constitutive vascular endothelial growth factor secretion in retinal pigment epithelium/choroid organ cultures: p38, nuclear factor kappaB, and the vascular endothelial growth factor receptor-2/phosphatidylinositol 3 kinase pathway , 2013, Molecular vision.

[19]  I. Bhutto,et al.  Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch's membrane/choriocapillaris complex. , 2012, Molecular aspects of medicine.

[20]  A. Cuschieri,et al.  Poly-l-lysine-coated magnetic nanoparticles as intracellular actuators for neural guidance , 2012, International journal of nanomedicine.

[21]  Yang Hu,et al.  Anti-inflammatory and antiangiogenic effects of nanoparticle-mediated delivery of a natural angiogenic inhibitor. , 2011, Investigative ophthalmology & visual science.

[22]  R. Schiffelers,et al.  Neovascular Age-Related Macular Degeneration , 2011, BioDrugs.

[23]  Sander R. Dubovy,et al.  Evaluation of Magnetic Micro- and Nanoparticle Toxicity to Ocular Tissues , 2011, PloS one.

[24]  P. Wust,et al.  Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme , 2010, Journal of Neuro-Oncology.

[25]  R. Adelman,et al.  Minimal effects of VEGF and anti-VEGF drugs on the permeability or selectivity of RPE tight junctions. , 2010, Investigative ophthalmology & visual science.

[26]  W. Moon,et al.  The effects of clinically used MRI contrast agents on the biological properties of human mesenchymal stem cells , 2010, NMR in biomedicine.

[27]  Asgar Ali,et al.  Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery. , 2010, Nanomedicine : nanotechnology, biology, and medicine.

[28]  Josh Wallman,et al.  The multifunctional choroid , 2010, Progress in Retinal and Eye Research.

[29]  B. Mishra,et al.  Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. , 2010, Nanomedicine : nanotechnology, biology, and medicine.

[30]  D. Coyne Ferumoxytol for treatment of iron deficiency anemia in patients with chronic kidney disease , 2009, Expert opinion on pharmacotherapy.

[31]  Jeff W M Bulte,et al.  In vivo MRI cell tracking: clinical studies. , 2009, AJR. American journal of roentgenology.

[32]  R. Thummel,et al.  CNTF induces photoreceptor neuroprotection and Müller glial cell proliferation through two different signaling pathways in the adult zebrafish retina. , 2009, Experimental eye research.

[33]  K. Csaky,et al.  Investigating the Movement of Intravitreal Human Serum Albumin Nanoparticles in the Vitreous and Retina , 2009, Pharmaceutical Research.

[34]  G. Kalantzis,et al.  Angioid streaks, clinical course, complications, and current therapeutic management , 2008, Therapeutics and clinical risk management.

[35]  D. S. Mcleod,et al.  Ocular nanoparticle toxicity and transfection of the retina and retinal pigment epithelium. , 2008, Nanomedicine : nanotechnology, biology, and medicine.

[36]  Yihai Cao,et al.  Hypoxia-Induced Retinal Angiogenesis in Zebrafish as a Model to Study Retinopathy , 2008, PloS one.

[37]  Jeffrey M Gross,et al.  Zebrafish mutants as models for congenital ocular disorders in humans , 2008, Molecular reproduction and development.

[38]  J. Lauderdale,et al.  Mechanisms controlling Pax6 isoform expression in the retina have been conserved between teleosts and mammals. , 2007, Developmental biology.

[39]  C. Verfaillie,et al.  The role of survivin in angiogenesis during zebrafish embryonic development , 2007, BMC Developmental Biology.

[40]  O. Rinner,et al.  The Zebrafish fade out mutant: a novel genetic model for Hermansky-Pudlak syndrome. , 2006, Investigative ophthalmology & visual science.

[41]  Yasmiana Muñoz,et al.  Biologically active vascular endothelial growth factor as a bacterial recombinant glutathione S‐transferase fusion protein , 2006, Biotechnology and applied biochemistry.

[42]  D. Stainier,et al.  Cellular and molecular analyses of vascular tube and lumen formation in zebrafish , 2005, Development.

[43]  Ajay Kumar Gupta,et al.  Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. , 2005, Biomaterials.

[44]  P. Couvreur,et al.  Intraocular injection of tamoxifen‐loaded nanoparticles: a new treatment of experimental autoimmune uveoretinitis , 2004, European journal of immunology.

[45]  P. Murray,et al.  Degree, duration, and causes of visual loss in uveitis , 2004, British Journal of Ophthalmology.

[46]  A. Hudspeth,et al.  Mutation of the zebrafish choroideremia gene encoding Rab escort protein 1 devastates hair cells. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Robert Gurny,et al.  Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles. , 2003, Investigative ophthalmology & visual science.

[48]  S. Neuhauss,et al.  Double cone dystrophy and RPE degeneration in the retina of the zebrafish gnn mutant. , 2003, Investigative ophthalmology & visual science.

[49]  A Kijlstra,et al.  Polarized vascular endothelial growth factor secretion by human retinal pigment epithelium and localization of vascular endothelial growth factor receptors on the inner choriocapillaris. Evidence for a trophic paracrine relation. , 1999, The American journal of pathology.

[50]  A. D. de Vos,et al.  VEGF and the Fab fragment of a humanized neutralizing antibody: crystal structure of the complex at 2.4 A resolution and mutational analysis of the interface. , 1998, Structure.

[51]  G. Martiny-Baron,et al.  An antagonistic vascular endothelial growth factor (VEGF) variant inhibits VEGF-stimulated receptor autophosphorylation and proliferation of human endothelial cells. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Y. Ogura,et al.  Biodegradable polymer microspheres for targeted drug delivery to the retinal pigment epithelium. , 1995, Survey of ophthalmology.

[53]  Y. Ikada,et al.  In vitro phagocytosis of polylactide microspheres by retinal pigment epithelial cells and intracellular drug release. , 1994, Current eye research.

[54]  F. Akay,et al.  Diabetic Macular Edema , 1969, Pakistan journal of medical sciences.

[55]  S. Govoni,et al.  Targeting VEGF in eye neovascularization: What's new?: A comprehensive review on current therapies and oligonucleotide-based interventions under development. , 2016, Pharmacological research.

[56]  Scott M. Taylor,et al.  Light-induced photoreceptor degeneration in the retina of the zebrafish. , 2012, Methods in molecular biology.

[57]  P. Kaiser,et al.  Neovascular age-related macular degeneration: potential therapies. , 2008, Drugs.

[58]  G. Barile,et al.  Proliferative vitreoretinopathy. , 2007, Ophthalmology.

[59]  G. Serbedzija,et al.  Zebrafish angiogenesis: A new model for drug screening , 2004, Angiogenesis.

[60]  M. Westerfield The zebrafish book : a guide for the laboratory use of zebrafish (Danio rerio) , 1995 .

[61]  E. Edelman,et al.  Optimization of release from magnetically controlled polymeric drug release devices. , 1993, Biomaterials.

[62]  S. R. Y. Cajal La rétine des vertébrés , 1892 .