Evolution of Complex RNA Polymerases: The Complete Archaeal RNA Polymerase Structure

The archaeal RNA polymerase (RNAP) shares structural similarities with eukaryotic RNAP II but requires a reduced subset of general transcription factors for promoter-dependent initiation. To deepen our knowledge of cellular transcription, we have determined the structure of the 13-subunit DNA-directed RNAP from Sulfolobus shibatae at 3.35 Å resolution. The structure contains the full complement of subunits, including RpoG/Rpb8 and the equivalent of the clamp-head and jaw domains of the eukaryotic Rpb1. Furthermore, we have identified subunit Rpo13, an RNAP component in the order Sulfolobales, which contains a helix-turn-helix motif that interacts with the RpoH/Rpb5 and RpoA′/Rpb1 subunits. Its location and topology suggest a role in the formation of the transcription bubble.

[1]  L. Aravind,et al.  A new family of polymerases related to superfamily A DNA polymerases and T7-like DNA-dependent RNA polymerases , 2008, Biology Direct.

[2]  F. Werner Structural evolution of multisubunit RNA polymerases. , 2008, Trends in microbiology.

[3]  P. Thuriaux,et al.  Early evolution of eukaryotic DNA-dependent RNA polymerases. , 2008, Trends in genetics : TIG.

[4]  Akira Hirata,et al.  The X-ray crystal structure of RNA polymerase from Archaea , 2008, Nature.

[5]  P. Cramer,et al.  Structure of an archaeal RNA polymerase. , 2008, Journal of molecular biology.

[6]  M. Thomm,et al.  Transcription Factor E Is a Part of Transcription Elongation Complexes* , 2007, Journal of Biological Chemistry.

[7]  Finn Werner,et al.  Structure and function of archaeal RNA polymerases , 2007, Molecular microbiology.

[8]  Jianpeng Ma,et al.  Normal mode refinement of anisotropic thermal parameters for a supramolecular complex at 3.42-Å crystallographic resolution , 2007, Proceedings of the National Academy of Sciences.

[9]  Luhua Lai,et al.  Structural, Biochemical, and Dynamic Characterizations of the hRPB8 Subunit of Human RNA Polymerases* , 2006, Journal of Biological Chemistry.

[10]  Katherine S. Pollard,et al.  The UCSC Archaeal Genome Browser , 2005, Nucleic Acids Res..

[11]  D. Stuart,et al.  What does structure tell us about virus evolution? , 2005, Current opinion in structural biology.

[12]  W. Greenleaf,et al.  Direct observation of base-pair stepping by RNA polymerase , 2005, Nature.

[13]  E. Geiduschek,et al.  An expanding family of archaeal transcriptional activators , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Zheng Rong Yang,et al.  RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins , 2005, Bioinform..

[15]  E. Geiduschek,et al.  Archaeal transcription and its regulators , 2005, Molecular microbiology.

[16]  L. Aravind,et al.  The many faces of the helix-turn-helix domain: transcription regulation and beyond. , 2005, FEMS microbiology reviews.

[17]  P. Cramer,et al.  Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. , 2004, Molecular cell.

[18]  D. Bushnell,et al.  Structural Basis of Transcription Nucleotide Selection by Rotation in the RNA Polymerase II Active Center , 2004, Cell.

[19]  Nathan A. Baker,et al.  PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations , 2004, Nucleic Acids Res..

[20]  Roger D Kornberg,et al.  Structural Basis of Transcription: An RNA Polymerase II-TFIIB Cocrystal at 4.5 Angstroms , 2004, Science.

[21]  D. Bushnell,et al.  Structural Basis of Transcription: Separation of RNA from DNA by RNA Polymerase II , 2004, Science.

[22]  R. Ebright,et al.  Transcription Factor B Contacts Promoter DNA Near the Transcription Start Site of the Archaeal Transcription Initiation Complex* , 2004, Journal of Biological Chemistry.

[23]  P. Cramer,et al.  An Extended Winged Helix Domain in General Transcription Factor E/IIEα* , 2003, Journal of Biological Chemistry.

[24]  P. Cramer,et al.  Architecture of the RNA Polymerase II-TFIIS Complex and Implications for mRNA Cleavage , 2003, Cell.

[25]  Roger D Kornberg,et al.  Complete, 12-subunit RNA polymerase II at 4.1-Å resolution: Implications for the initiation of transcription , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[26]  S. Yokoyama,et al.  Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 Å resolution , 2002, Nature.

[27]  F Werner,et al.  Structure of an archaeal homolog of the eukaryotic RNA polymerase II RPB4/RPB7 complex. , 2001, Molecular cell.

[28]  Mark A. Ragan,et al.  The complete genome of the crenarchaeon Sulfolobus solfataricus P2 , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[29]  P. Cramer,et al.  Structural Basis of Transcription: RNA Polymerase II at 2.8 Ångstrom Resolution , 2001, Science.

[30]  P. Cramer,et al.  Structural Basis of Transcription: An RNA Polymerase II Elongation Complex at 3.3 Å Resolution , 2001, Science.

[31]  Arkady Mustaev,et al.  Structural Mechanism for Rifampicin Inhibition of Bacterial RNA Polymerase , 2001, Cell.

[32]  P. Brick,et al.  Crystal structure of RPB5, a universal eukaryotic RNA polymerase subunit and transcription factor interaction target. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[33]  P. Cramer,et al.  Architecture of RNA polymerase II and implications for the transcription mechanism. , 2000, Science.

[34]  D. N. Perkins,et al.  Probability‐based protein identification by searching sequence databases using mass spectrometry data , 1999, Electrophoresis.

[35]  P B Sigler,et al.  The structural basis for the oriented assembly of a TBP/TFB/promoter complex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Thomas C. Terwilliger,et al.  Automated MAD and MIR structure solution , 1999, Acta crystallographica. Section D, Biological crystallography.

[37]  Patrice Gouet,et al.  ESPript: analysis of multiple sequence alignments in PostScript , 1999, Bioinform..

[38]  S. Bell,et al.  Temperature, template topology, and factor requirements of archaeal transcription. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[39]  P. Thuriaux,et al.  Transcription in archaea: similarity to that in eucarya. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[40]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[41]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[42]  P. Sharp,et al.  DNA topology and a minimal set of basal factors for transcription by RNA polymerase II , 1993, Cell.

[43]  H. Klenk,et al.  Structure and Function of the DNA-Dependent RNA Polymerase of Sulfolobus , 1993 .

[44]  D I Stuart,et al.  Crystal structure of cat muscle pyruvate kinase at a resolution of 2.6 A. , 1979, Journal of molecular biology.

[45]  Vincent B. Chen,et al.  MolProbity: all-atom contacts and structure validation for proteins and nucleic acids , 2007, Nucleic Acids Res..

[46]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[47]  E. Koonin,et al.  Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases , 2003, BMC Structural Biology.

[48]  Burkhard Rost,et al.  The PredictProtein server , 2003, Nucleic Acids Res..

[49]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[50]  S. Bell,et al.  Preparation of components of archaeal transcription preinitiation complex. , 2001, Methods in enzymology.

[51]  M. Rossmann,et al.  Rotation function calculations with GLRF program. , 1997, Methods in enzymology.

[52]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[53]  Liang Tong,et al.  [34] Rotation function calculations with GLRF program. , 1997, Methods in enzymology.

[54]  S. Harrison,et al.  DNA recognition by proteins with the helix-turn-helix motif. , 1990, Annual review of biochemistry.