An Urn-Based Nonparametric Modeling of the Dependence between PD and LGD with an Application to Mortgages

We propose an alternative approach to the modeling of the positive dependence between the probability of default and the loss given default in a portfolio of exposures, using a bivariate urn process. The model combines the power of Bayesian nonparametrics and statistical learning, allowing for the elicitation and the exploitation of experts’ judgements, and for the constant update of this information over time, every time new data are available. A real-world application on mortgages is described using the Single Family Loan-Level Dataset by Freddie Mac.

[1]  L. Thomas,et al.  Comparisons of linear regression and survival analysis using single and mixture distributions approaches in modelling LGD , 2012 .

[2]  R. C. Merton,et al.  On the Pricing of Corporate Debt: The Risk Structure of Interest Rates , 1974, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[3]  John H. Frye,et al.  Depressing Recoveries , 2001 .

[4]  D. Blei Bayesian Nonparametrics I , 2016 .

[5]  L. Rüschendorf On the distributional transform, Sklar's theorem, and the empirical copula process , 2009 .

[6]  R. Geske The Valuation of Corporate Liabilities as Compound Options , 1977, Journal of Financial and Quantitative Analysis.

[7]  Harald Scheule,et al.  Credit risk analytics : measurement techniques, applications, and examples in SAS , 2016 .

[8]  D. Duffie Defaultable Term Structure Models with Fractional Recovery of Par , 1998 .

[9]  D. Freedman,et al.  De Finetti's Theorem for Markov Chains , 1980 .

[10]  Pietro Muliere,et al.  A nonparametric urn-based approach to interacting failing systems with an application to credit risk modeling , 2010 .

[11]  Alexander J. McNeil,et al.  Bayesian inference for generalized linear mixed models of portfolio credit risk , 2007 .

[12]  Stephen G. Walker,et al.  Reinforced random processes in continuous time , 2003 .

[13]  J. Crook,et al.  Is it obligor or instrument that explains recovery rate: Evidence from US corporate bond , 2017 .

[14]  Xiao-Li Meng,et al.  Multiple-Imputation Inferences with Uncongenial Sources of Input , 1994 .

[15]  Eduardo S. Schwartz,et al.  A Simple Approach to Valuing Risky Fixed and Floating Rate Debt , 1995 .

[16]  Pasquale Cirillo,et al.  A Reinforced Urn Process Modeling of Recovery Rates and Recovery Times , 2018, Journal of Banking & Finance.

[17]  James Derbyshire,et al.  The siren call of probability: Dangers associated with using probability for consideration of the future , 2017 .

[18]  Piercesare Secchi,et al.  REINFORCED URN PROCESSES FOR MODELING CREDIT DEFAULT DISTRIBUTIONS , 2004 .

[19]  Bruce D. Phelps The Link between Default and Recovery Rates: Theory, Empirical Evidence, and Implications , 2006 .

[20]  Simon Jackman,et al.  Bayesian Analysis for the Social Sciences , 2009 .

[21]  Pasquale Cirillo,et al.  Modeling the Dependence between PD and LGD , 2018 .

[22]  A. Hamerle,et al.  Modelling Loss Given Default: A “Point in Time”-Approach , 2011 .

[23]  S. Walker,et al.  BAYESIAN NONPARAMETRIC ESTIMATION OF A BIVARIATE SURVIVAL FUNCTION , 2007 .

[24]  D. Duffie,et al.  Modeling term structures of defaultable bonds , 1999 .

[25]  Sonia Petrone,et al.  Hierarchical reinforced urn processes , 2012 .

[26]  Oldrich Alfons Vasicek Credit Valuation , 2000 .

[27]  A. Mira,et al.  Reinforced urn processes for credit risk models , 2015 .

[28]  Hans-Peter Deutsch,et al.  Credit Risk , 2019, Derivatives and Internal Models.

[29]  Paolo Giudici,et al.  Bayesian data mining, with application to benchmarking and credit scoring , 2001 .

[30]  Alexander M. Millkey The Black Swan: The Impact of the Highly Improbable , 2009 .

[31]  J. Hüsler,et al.  Alarm Systems and Catastrophes from a Diverse Point of View , 2013 .

[32]  S. Walker,et al.  Beta-Stacy processes and a generalization of the Polya urn scheme , 1997 .

[33]  Bogie Ozdemir,et al.  Basel requirements of downturn loss given default: modeling and estimating probability of default and loss given default correlations , 2006 .

[34]  Bogie Ozdemir,et al.  Basel Requirement of Downturn Lgd: Modeling and Estimating Pd & Lgd Correlations , 2006 .

[35]  J. Witzany A Two-Factor Model for PD and LGD Correlation , 2011 .

[36]  An Explanatory Note on the Basel II IRB Risk Weight Functions - July 2005 , 2005 .

[37]  Paul Embrechts,et al.  Quantitative Risk Management , 2011, International Encyclopedia of Statistical Science.

[38]  David Lando,et al.  On cox processes and credit risky securities , 1998 .

[39]  C. Genest,et al.  Statistical Inference Procedures for Bivariate Archimedean Copulas , 1993 .

[40]  C. Lichtenstein Introductory Note to the Basle Committee Paper on Proposals for International Convergence of Capital Measurement and Capital Standards , 1988 .

[41]  Edward I. Altman,et al.  Default Recovery Rates and Lgd in Credit Risk Modelling and Practice , 2011 .

[42]  T. C. Wilson,et al.  Portfolio Credit Risk , 1998 .

[43]  Bill Ravens,et al.  An Introduction to Copulas , 2000, Technometrics.

[44]  Piercesare Secchi,et al.  Urn schemes and reinforced random walks , 2000 .

[45]  Paolo Giudici,et al.  Estimating bank default with generalised extreme value regression models , 2015, J. Oper. Res. Soc..

[46]  S. P. Mason,et al.  Contingent Claims Analysis of Corporate Capital Structures: An Empirical Investigation , 1984, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[47]  Paolo Giudici,et al.  Statistical merging of rating models , 2011, J. Oper. Res. Soc..

[48]  Maria Carla Galavotti Subjectivism, Objectivism and Objectivity in Bruno de Finetti’s Bayesianism , 2001 .

[50]  J. Hull Risk Management And Financial Institutions , 2006 .

[51]  Max Bruche,et al.  Recovery rates , default probabilities , and the credit cycle , 2006 .

[52]  Barry Eichengreen,et al.  How the Subprime Crisis Went Global: Evidence from Bank Credit Default Swap Spreads , 2009 .

[53]  Suresh M. Sundaresan,et al.  Does Default Risk in Coupons Affect the Valuation of Corporate Bonds?: A Contingent Claims Model , 1993 .