Space Propulsion Technology for Small Spacecraft

As small satellites become more popular and capable, strategies to provide in-space propulsion increase in importance. Applications range from orbital changes and maintenance, attitude control and desaturation of reaction wheels to drag compensation and de-orbit at spacecraft end-of-life. Space propulsion can be enabled by chemical or electric means, each having different performance and scalability properties. The purpose of this review is to describe the working principles of space propulsion technologies proposed so far for small spacecraft. Given the size, mass, power, and operational constraints of small satellites, not all types of propulsion can be used and very few have seen actual implementation in space. Emphasis is given in those strategies that have the potential of miniaturization to be used in all classes of vehicles, down to the popular 1-L, 1-kg CubeSats and smaller.

[1]  Wen Chen,et al.  The STU-2 CubeSat Mission and In-Orbit Test Results , 2016 .

[2]  Hirotaka Sawada,et al.  Flight status of IKAROS deep space solar sail demonstrator , 2011 .

[3]  Paulo Lozano,et al.  Studies on the Ion-Droplet Mixed Regime in Colloid Thrusters , 2003 .

[4]  Jurg Zwahlen,et al.  Maturation of Iodine Fueled BIT-3 RF Ion Thruster and RF Neutralizer , 2016 .

[5]  Dan R. Lev,et al.  Heated Gas Propulsion System Conceptual Design for the SAMSON Nano-Satellite (Propulsion) , 2017 .

[6]  G. Landis Mission to the Gravitational Focus of the Sun: A Critical Analysis , 2016, 1604.06351.

[7]  Natasha Bosanac,et al.  The Lunar IceCube Mission Design: Construction of Feasible Transfer Trajectories with a Constrained Departure , 2016 .

[8]  Robert K. Masse,et al.  AF-M315E Propulsion System Advances and Improvements , 2016 .

[9]  Edgar Yazid Choueiri A critical history of electric propulsion: The first fifty years (1906-1956) , 2004 .

[10]  A. Tomlinson POWER , 1998, The Palgrave Encyclopedia of Imperialism and Anti-Imperialism.

[11]  Jason A. Young,et al.  First Performance Measurements of the Phase Four RF Thruster IEPC-2017-431 , 2017 .

[12]  K. Anflo,et al.  Flight demonstration of new thruster and green propellant technology on the PRISMA satellite , 2009 .

[13]  Robert Zee,et al.  The Design and Test of a Compact Propulsion System for CanX Nanosatellite Formation Flying , 2005 .

[14]  Michael J. Patterson,et al.  A Synopsis of Ion Propulsion Development Projects in the United States: SERT 1 to Deep Space I , 1999 .

[15]  Mason A. Peck,et al.  KickSat: A Crowd-Funded Mission to Demonstrate the World’s Smallest Spacecraft , 2013 .

[16]  James R. Wertz,et al.  Space Mission Analysis and Design , 1992 .

[17]  E. Glenn Lightsey,et al.  Development of A Modular, Cold Gas Propulsion System for Small Satellite Applications , 2012 .

[18]  Kurt A. Polzin,et al.  Overview of NASA Iodine Hall Thruster Propulsion System Development , 2016 .

[19]  M. Keidar,et al.  A Vacuum Arc Thruster with Ablatable Anode , 2016 .

[20]  Les Johnson,et al.  Near Earth Asteroid Scout , 2015 .

[21]  Luís Gonzaga Trabasso,et al.  Status and Trends of Smallsats and Their Launch Vehicles — An Up-to-date Review , 2017 .

[22]  Edgar Y. Choueiri,et al.  A Critical History of Electric Propulsion: The First 50 Years (1906-1956) , 2004 .

[23]  B. Seifert,et al.  Performance Mapping and Qualification of the IFM Nano Thruster FM for in Orbit Demonstration , 2017 .

[24]  David Krejci,et al.  Emission Characteristics of Passively Fed Electrospray Microthrusters with Propellant Reservoirs , 2017 .

[25]  David Krejci,et al.  Endurance testing of a pulsed plasma thruster for nanosatellites , 2013 .

[26]  Ronald A. Spores,et al.  The Advancing State of AF-M315E Technology , 2014 .

[27]  Charles Finley,et al.  TacSat-2: A Story of Survival , 2007 .

[28]  Michael Boss,et al.  Development of a Miniaturized RF Ion Engine System for Commercial and Scientific applications , 2011 .

[29]  Gregory A. Jerman,et al.  Propulsion System Development for the Iodine Satellite (iSAT) Demonstration Mission , 2015 .

[30]  Jurg Zwahlen,et al.  Development of Busek 0.5N Green Monopropellant Thruster , 2013 .

[31]  Paulo Lozano,et al.  Spacecraft-Charging Characteristics Induced by the Operation of Electrospray Thrusters , 2017 .

[32]  M. Martinez-Sanchez,et al.  Spacecraft Electric Propulsion—An Overview , 1998 .

[33]  Ronald A. Spores,et al.  GPIM AF-M315E Propulsion System , 2015 .

[34]  P. Turchi,et al.  Pulsed Plasma Thruster , 1998 .

[35]  Martin Sweeting,et al.  “You can get there from here”: Advanced low cost propulsion concepts for small satellites beyond LEO , 2005 .

[36]  Simone Ciaralli,et al.  PPTCUP lifetime test results , 2013 .

[37]  Paulo Lozano,et al.  Ionic liquid ion sources: characterization of externally wetted emitters. , 2005, Journal of colloid and interface science.

[38]  W. Steiger,et al.  Indium Field Emission Electric Propulsion Microthruster Experimental Characterization , 2004 .

[39]  R. Jahn,et al.  Physics of Electric Propulsion , 1968 .

[40]  Enrico Canuto,et al.  All-propulsion design of the Drag-Free and Attitude Control of the European Satellite GOCE , 2009 .

[41]  David Krejci,et al.  Structural impact of honeycomb catalysts on hydrogen peroxide decomposition for micro propulsion , 2012 .

[42]  Karsten Danzmann,et al.  LISA - An ESA Cornerstone Mission for the Detection and Observation of Gravitational Waves , 2003 .

[43]  Andrew D. Ketsdever,et al.  Systems Considerations and Design Options for' Microspacecraft Propulsion Systems , 1999 .

[44]  Douglas Sheldon,et al.  Near-Earth Asteroid Scout , 2014 .

[45]  Eberhard Gill,et al.  In-orbit results of Delfi-n3Xt: Lessons learned and move forward , 2016 .

[46]  Giulio Manzoni,et al.  Cubesat Micropropulsion Characterization in Low Earth Orbit , 2015 .

[47]  Matthew C. Deans,et al.  Green Propellant Infusion Mission Program Development and Technology Maturation , 2014 .

[48]  Samudra E. Haque,et al.  Electric propulsion for small satellites , 2014 .

[49]  Vladimir Kim,et al.  Electric Propulsion Activity in Russia , 2001 .

[50]  Joel Krajewski,et al.  MarCO: CubeSats to Mars in 2016 , 2015 .

[51]  David Krejci,et al.  A survey and assessment of the capabilities of Cubesats for Earth observation , 2012 .

[52]  Les Johnson,et al.  NanoSail-D: A solar sail demonstration mission , 2011 .

[53]  M. Leipold,et al.  A Summary of Solar Sail Technology Developments and Proposed Demonstration Missions , 1999 .

[54]  M. Kassebom,et al.  Evaluation of Propulsion Systems for Satellite End-Of-Life De.Orbiting , 2002 .

[55]  Neil M. White,et al.  MEMS for automotive and aerospace applications , 2013 .

[56]  Robert L. Sackheim,et al.  Overview of United States Space Propulsion Technology and Associated Space Transportation Systems , 2006 .

[57]  Robert M. Zubrin,et al.  Magnetic sails and interplanetary travel , 1989 .

[58]  David A. Spencer,et al.  Testing The LightSail Program: Advancing Solar Sailing Technology Using a CubeSat Platform , 2016 .

[59]  Joseph Lukas,et al.  High thrust-to-power ratio micro-cathode arc thruster , 2016 .

[60]  Robert S. Wolf,et al.  Space Propulsion Systems , 1991 .

[61]  John R. Brophy,et al.  NASA's Deep Space 1 ion engine , 2002 .

[62]  Les Johnson,et al.  Solar and Drag Sail Propulsion: From Theory to Mission Implementation , 2014 .

[63]  Richard E. Wirz,et al.  Miniature Ion Thrusters : A Review of Modern Technologies and Mission Capabilities , 2015 .

[64]  William C. Danchi,et al.  Terrestrial Planet Finder Interferometer: 2007-2008 progress and plans , 2008, Astronomical Telescopes + Instrumentation.

[65]  Vlad Hruby,et al.  Review of Electric Propulsion Activities in the U.S. Industry , 2003 .

[66]  Jurg Zwahlen,et al.  Development Status and 1U CubeSat Application of Busek’s 0.5N Green Monopropellant Thruster , 2014 .

[67]  D. Krejci,et al.  Performance Assessment of 1 N Bipropellant Thruster Using Green Propellants H2O2/Kerosene , 2013 .

[68]  Steven R. Oleson,et al.  Mission and System Advantages of Iodine Hall Thrusters , 2014 .

[69]  Michael Keidar,et al.  Micro-Cathode Arc Thruster for small satellite propulsion , 2015, 2016 IEEE Aerospace Conference.

[70]  Staffan Persson,et al.  SMART-1 mission description and development status , 2002 .

[71]  F. J. Higuera,et al.  Structure of the menisci of leaky dielectric liquids during electrically-assisted evaporation of ions , 2016 .

[72]  Sungyong An,et al.  Development of a liquid propellant rocket utilizing hydrogen peroxide as a monopropellant , 2008 .

[73]  J. Puig-Suari,et al.  Development of the standard CubeSat deployer and a CubeSat class PicoSatellite , 2001, 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542).

[74]  L. Perez Lebbink,et al.  Implementation of the T 3 μPS in the Delfi-n3Xt Satellite , 2010 .

[75]  J. Shrimpton,et al.  Dependence of Pellet Shape and Size on Pressure Drop in H2O2 Thrusters , 2014 .

[76]  Edgar Y. Choueiri,et al.  Scaling laws for electromagnetic pulsed plasma thrusters , 2001 .

[77]  Luís Gonzaga Trabasso,et al.  Status and Trends of Smallsats and Their Launch Vehicles — An Upto-date Review , 2017 .

[78]  Robert P. Hoyt,et al.  Performance Characterization of the HYDROS™ Water Electrolysis Thruster , 2015 .

[79]  Michael Keidar,et al.  Magnetically enhanced vacuum arc thruster , 2005 .

[80]  Kjell Anflo,et al.  In-Space Demonstration of High Performance Green Propulsion and its Impact on Small Satellites , 2011 .

[81]  John Ziemer,et al.  Colloid micro-Newton thruster development for the ST7-DRS and LISA missions , 2005 .

[82]  Alexander Reissner Lifetime Testing of the mN-FEEP Thruster , 2016 .

[83]  Pekka Janhunen,et al.  Electric Sail for Spacecraft Propulsion , 2004 .

[84]  H. Greer Vacuum startup of reactors for catalytic decomposition of hydrazine , 1970 .

[85]  Kristina M. Lemmer,et al.  Propulsion for CubeSats , 2017 .

[86]  George P. Sutton,et al.  History of liquid propellant rocket engines in the United States , 2003 .

[87]  Geoffrey Ingram Taylor,et al.  Disintegration of water drops in an electric field , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[88]  G. Ganapathi,et al.  The Ion Propulsion System For Dawn , 2003 .