A new approach for the simulation of skeletal muscles using the tool of statistical mechanics

The structure of a skeletal muscle is dominated by its hierarchical architecture in which thousands of muscle fibres are arranged within a connective tissue network. The single muscle fibres consist of many force-producing cells, known as sarcomeres. These micro biological engines are part of a motor unit and contribute to the contraction of the whole muscle. There are a lot of questions concerning the optimisation of muscle strength and agility. Standard experimental investigations are not sufficient to answer these questions because they do not supply enough information. Additionally, these methods are limited because not enough material for testing is accessible. To overcome these problems, numerical testing tools can be an adequate alternative. From the mechanical point of view the material behaviour of muscles is highly non-linear. They undergo large deformations in space, thereby changing their shape significantly, so that geometrical nonlinearity has to be considered. Many authors use continuum-based approaches in combination with the finite element method to describe such material behaviour. However, models of this kind require realistic constitutive relations between stress and strain which are difficult to determine in an inhomogeneous material. Furthermore, biomechanical information cannot be fully exploited in these models. The present approach is crucially based on the use of the finite element method. The material behaviour of the muscle is split into a so-called active and a passive part. To describe the passive part special unit cells consisting of one tetrahedral element and six truss elements have been derived. Embedded into these unit cells are further truss elements which represent bundles of muscle fibres. Depending on the discretisation it is possible to simulate the material behaviour of e.g. artery walls characterised by oriented fibres or soft tissue including only non-oriented fibres. In summary, the present concept has the advantage that a three-dimensional model is developed which allows us take into account many physiological processes at the micro level. Eine neue Methode zur Simulation von Skelettmuskeln mit Hilfe der statistischen Mechanik Die Mikrostruktur eines Skelettmuskels ist durch die hierarchische Architektur der einzelnen Muskelfasern charakterisiert, die in einem Gewebe eingebettet sind. Eine einzelne Muskelfaser besteht aus Kraft produzierenden Zellen, den so genannten Sarkomeren. Diese mikrobiologischen „Motoren” bilden einen Teil einer motorischen Einheit und tragen zur Kontraktion des gesamten Muskels bei. Es gibt eine Vielzahl von offenen Fragen auf diesem Gebiet. Standardexperimente konnen diese Fragen nicht ausreichend beantworten, da sie nicht genugend Information liefern. Zusatzlich ist das zu testende Material nicht immer in ausreichenden Mengen vorhanden. Um diese Probleme zu umgehen, kann ein numerisches Test-„Werkzeug” eine angemessene Alternative sein. In mechanischer Hinsicht kann das Materialverhalten von Muskeln als stark nichtlinear angesehen werden. Muskeln zeigen wahrend einer Kontraktion starke Verformungen, so dass geometrische Nichtlinearitaten berucksichtigt werden mussen. Viele Autoren benutzen kontinuums-basierte Ansatze um ein solches Verhalten zu beschreiben. Ein Nachteil solcher phanomenologischer Modelle ist die zeitaufwendige Bestimmung der Materialparameter. Wobei diese mechanisch meistens nicht interpretierbar sind, was einen weiteren Nachteil darstellt. Der vorliegende Ansatz basiert auf der Finite-Elemente-Methode. Grundidee dieser mikromechanischen Modellierung ist das Aufspalten des Muskelmaterialverhaltens in einen aktiven und einen passiven Anteil. Zur Beschreibung des passiven Anteils wurden spezielle Einheitszellen entwickelt, die aus einem finiten Tetraederelement und sechs Stabelementen bestehen. Weitere Stabelemente, die in diese Einheitszellen eingebettet sind, stellen Muskelfaserbundel dar, die den aktiven Anteil charakterisieren. In Abhangigkeit von der Diskretisierung konnen somit z. B. Blutgefase wie Arterien (spezielle Orientierung der Fasern) oder allgemeine weiche Gewebe (unorientierte Faseranordnung) beschrieben werden. Zusammenfassend liegt der Vorteil dieses Konzepts in einer dreidimensionalen Modellierung, die es ermoglicht eine Vielzahl von physiologischen Prozessen auf der Mikroebene zu erfassen und somit deren Einfluss auf der Makroebene zu studieren.

[1]  M. Blix Die Länge und die Spannung des Muskels1 , 1894 .

[2]  P A Huijing,et al.  Muscle, the motor of movement: properties in function, experiment and modelling. , 1998, Journal of electromyography and kinesiology : official journal of the International Society of Electrophysiological Kinesiology.

[3]  J. Mateika,et al.  Contractile properties of human nasal dilator motor units. , 1998, Journal of neurophysiology.

[4]  M. Johnson,et al.  Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. , 1973, Journal of the neurological sciences.

[5]  Markus Böl,et al.  Finite element modelling of rubber-like polymers based on chain statistics , 2006 .

[6]  Awj Sander Gielen,et al.  A Finite Element Approach for Skeletal Muscle using a Distributed Moment Model of Contraction , 2000, Computer methods in biomechanics and biomedical engineering.

[7]  J. L. Leeuwen Optimum power output and structural design of sarcomeres , 1991 .

[8]  H. Huxley,et al.  Changes in the Cross-Striations of Muscle during Contraction and Stretch and their Structural Interpretation , 1954, Nature.

[9]  W Herzog,et al.  A Framework for Structured Modeling of Skeletal Muscle , 2004, Computer methods in biomechanics and biomedical engineering.

[10]  R. Ramsey,et al.  The isometric length‐tension diagram of isolated skeletal muscle fibers of the frog , 1940 .

[11]  P. Rack,et al.  The effects of length and stimulus rate on tension in the isometric cat soleus muscle , 1969, The Journal of physiology.

[12]  G. Stienen,et al.  The influence of velocity of length change on tension development in skeletal muscle: model calculations and experimental results. , 1984, Journal of biomechanics.

[13]  A. Huxley Muscle structure and theories of contraction. , 1957, Progress in biophysics and biophysical chemistry.

[14]  B. Koopman,et al.  Three-dimensional finite element modeling of skeletal muscle using a two-domain approach: linked fiber-matrix mesh model. , 2001, Journal of biomechanics.

[15]  B. Tomlinson,et al.  Data on the distribution of fibre types in five human limb muscles. An autopsy study. , 1971, Journal of the neurological sciences.

[16]  D B Chaffin,et al.  Muscle lines-of-action affect predicted forces in optimization-based spine muscle modeling. , 1995, Journal of biomechanics.

[17]  W. Herzog Skeletal muscle mechanics: from mechanisms to function , 2001 .

[18]  Gordon Clapworthy,et al.  An Anatomy-Based Approach to Human Muscle Modeling and Deformation , 2002, IEEE Trans. Vis. Comput. Graph..

[19]  A. Hill The heat of shortening and the dynamic constants of muscle , 1938 .

[20]  F.E. Zajac,et al.  An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures , 1990, IEEE Transactions on Biomedical Engineering.

[21]  F. Zajac,et al.  The effect of activation history on tension production by individual muscle units , 1976, Brain Research.

[22]  H. Hatze,et al.  A myocybernetic control model of skeletal muscle , 1977, Biological Cybernetics.

[23]  E Y Chao,et al.  Simulation and animation of musculoskeletal joint system. , 1993, Journal of biomechanical engineering.

[24]  R. Enoka,et al.  Motor-unit synchronization alters spike-triggered average force in simulated contractions. , 2002, Journal of neurophysiology.

[25]  B. C. Abbott,et al.  The relation between velocity of shortening and the tension‐length curve of skeletal muscle , 1953, The Journal of physiology.

[26]  A. Hill First and Last Experiments in Muscle Mechanics , 1970 .

[27]  Sudhanshu Kumar Semwal,et al.  Biomechanical modeling: Implementing line-of-action algorithm for human muscles and bones using generalized cylinders , 1994, Comput. Graph..

[28]  J. A. C. Martins,et al.  A numerical model of passive and active behavior of skeletal muscles , 1998 .

[29]  T. L. Hill,et al.  Some self-consistent two-state sliding filament models of muscle contraction. , 1975, Biophysical journal.

[30]  R. Stein,et al.  Determination of the frequency response of isometric soleus muscle in the cat using random nerve stimulation , 1973, The Journal of physiology.

[31]  R. Blickhan,et al.  A finite-element model for the mechanical analysis of skeletal muscles. , 2000, Journal of theoretical biology.

[32]  V G Macefield,et al.  Comparison of contractile properties of single motor units in human intrinsic and extrinsic finger muscles , 2000, The Journal of physiology.

[33]  J. Eccles,et al.  The isometric responses of mammalian muscles , 1930, The Journal of physiology.

[34]  A. Huxley,et al.  The variation in isometric tension with sarcomere length in vertebrate muscle fibres , 1966, The Journal of physiology.

[35]  G Pettet,et al.  Modelling the line of action for the oblique abdominal muscles using an elliptical torso model. , 2001, Journal of biomechanics.

[36]  R. J. Podolsky,et al.  Cross-bridge properties derived from muscle isotonic velocity transients. , 1969, Proceedings of the National Academy of Sciences of the United States of America.

[37]  G. Zahalak,et al.  A distribution-moment model of energetics in skeletal muscle. , 1991, Journal of biomechanics.

[38]  A. Hill The maximum work and mechanical efficiency of human muscles, and their most economical speed , 1922, The Journal of physiology.

[39]  R. Stein,et al.  Changes in firing rate of human motor units during linearly changing voluntary contractions , 1973, The Journal of physiology.

[40]  E. Adrian,et al.  The discharge of impulses in motor nerve fibres , 1929, The Journal of physiology.

[41]  M R Drost,et al.  Finite element modelling of contracting skeletal muscle. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[42]  A. Huxley,et al.  Structural Changes in Muscle During Contraction: Interference Microscopy of Living Muscle Fibres , 1954, Nature.

[43]  M G Pandy,et al.  Computer modeling and simulation of human movement. , 2001, Annual review of biomedical engineering.

[44]  Y. Fung,et al.  Biomechanics: Mechanical Properties of Living Tissues , 1981 .

[45]  Dr. D. Kernell,et al.  Relation between isometric force and stimulus rate in cat's hindlimb motor units of different twitch contraction time , 2004, Experimental Brain Research.

[46]  M. Sjöström,et al.  Distribution of different fibre types in human skeletal muscles. I. Method for the preparation and analysis of cross-sections of whole tibialis anterior , 1983, The Histochemical Journal.

[47]  S. Delp,et al.  A 3D model of muscle reveals the causes of nonuniform strains in the biceps brachii. , 2005, Journal of biomechanics.

[48]  O. Lippold,et al.  Motor unit activity in the voluntary contraction of human muscle , 1954, The Journal of physiology.

[49]  Herbert Hatze,et al.  Myocybernetic control models of skeletal muscle : characteristics and applications , 1981 .