Fast multiple-baseline stereo with occlusion

This paper presents a new and fast algorithm for multi-baseline stereo designed to handle the occlusion problem. The algorithm is a hybrid between fast heuristic occlusion overcoming algorithms that precompute an approximate visibility and slower methods that use correct visibility handling. Our approach is based on iterative dynamic programming and computes simultaneously disparity and camera visibility. Interestingly, dynamic programming makes it possible to compute exactly part of the visibility information. The remainder is obtained through heuristics. The validity of our scheme is established using real imagery with ground truth and compares favorably with other state-of-the-art multi-baseline stereo algorithms.

[1]  N BelhumeurPeter A Bayesian approach to binocular stereopsis , 1996 .

[2]  Changming Sun,et al.  Fast Stereo Matching by Iterated Dynamic Programming and Quadtree Subregioning , 2004, BMVC.

[3]  Olga Veksler,et al.  Fast variable window for stereo correspondence using integral images , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[4]  Jong-Il Park,et al.  Hierarchical Depth Mapping from Multiple Cameras , 1997, ICIAP.

[5]  Sébastien Roy,et al.  Stereo Without Epipolar Lines: A Maximum-Flow Formulation , 1999, International Journal of Computer Vision.

[6]  Emanuele Trucco,et al.  Introductory techniques for 3-D computer vision , 1998 .

[7]  Olivier D. Faugeras,et al.  Complete Dense Stereovision Using Level Set Methods , 1998, ECCV.

[8]  Yuichi Ohta,et al.  Occlusion detectable stereo-occlusion patterns in camera matrix , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[9]  Davi Geiger,et al.  Occlusions, Discontinuities, and Epipolar Lines in Stereo , 1998, ECCV.

[10]  Vladimir Kolmogorov,et al.  Multi-camera Scene Reconstruction via Graph Cuts , 2002, ECCV.

[11]  Aaron F. Bobick,et al.  Disparity-Space Images and Large Occlusion Stereo , 1994, ECCV.

[12]  Kiriakos N. Kutulakos,et al.  A Theory of Shape by Space Carving , 2000, International Journal of Computer Vision.

[13]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[14]  Carlo Tomasi,et al.  A Pixel Dissimilarity Measure That Is Insensitive to Image Sampling , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  D. Scharstein,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, Proceedings IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV 2001).

[16]  Emanuele Trucco,et al.  Efficient stereo with multiple windowing , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[17]  Richard Szeliski,et al.  Handling occlusions in dense multi-view stereo , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[18]  Geoffrey Egnal,et al.  Detecting Binocular Half-Occlusions: Empirical Comparisons of Five Approaches , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Ingemar J. Cox,et al.  A Maximum Likelihood Stereo Algorithm , 1996, Comput. Vis. Image Underst..

[20]  Steven M. Seitz,et al.  Photorealistic Scene Reconstruction by Voxel Coloring , 1997, International Journal of Computer Vision.

[21]  VekslerOlga,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001 .

[22]  Vladimir Kolmogorov,et al.  Computing visual correspondence with occlusions using graph cuts , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[23]  M. Sanfourche On the choice of the correlation term for multi-baseline stereo-vision , 2004 .

[24]  Takeo Kanade,et al.  A Stereo Matching Algorithm with an Adaptive Window: Theory and Experiment , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Takeo Kanade,et al.  A multiple-baseline stereo , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[26]  Takeo Kanade,et al.  Stereo by Intra- and Inter-Scanline Search Using Dynamic Programming , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.