A complete symbolic-numeric linear method for camera pose determination

Camera pose estimation is the problem of determining the position and orientation of an internally calibrated camera from known 3D reference points and their images. We briefly survey several existing methods for pose estimation, then introduce our new complete linear method, which is based on a symbolic-numeric method from the geometric (Jet) theory of partial differential equations. The method is stable and robust. In particular, it can deal with the points near critical configurations. Numerical experiments are given to show the performance of the new method.

[1]  E. Kahler Einführung in die Theorie der Systeme von Differentialgleichungen , 1937 .

[2]  M. Kuranishi ON E. CARTAN'S PROLONGATION THEOREM OF EXTERIOR DIFFERENTIAL SYSTEMS.* , 1957 .

[3]  J. Pommaret Systems of partial differential equations and Lie pseudogroups , 1978 .

[4]  J. Emsalem Géométrie des points épais , 1978 .

[5]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[6]  Gene H. Golub,et al.  Matrix computations , 1983 .

[7]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using unit quaternions , 1987 .

[8]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[9]  H. Stetter,et al.  An Elimination Algorithm for the Computation of All Zeros of a System of Multivariate Polynomial Equations , 1988 .

[10]  Radu Horaud,et al.  An analytic solution for the perspective 4-point problem , 1989, Proceedings CVPR '89: IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[11]  Robert M. Haralick,et al.  Analysis and solutions of the three point perspective pose estimation problem , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[12]  Wenjun Wu,et al.  Mechanical Theorem Proving in Geometries , 1994, Texts and Monographs in Symbolic Computation.

[13]  Wen-tsün Wu Numerical and Symbolic Scientific Computing , 1994, Texts & Monographs in Symbolic Computation.

[14]  Mongi A. Abidi,et al.  A New Efficient and Direct Solution for Pose Estimation Using Quadrangular Targets: Algorithm and Evaluation , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  H. M. Möller,et al.  Multivariate polynomial equations with multiple zeros solved by matrix eigenproblems , 1995 .

[16]  D. Kirby THE ALGEBRAIC THEORY OF MODULAR SYSTEMS , 1996 .

[17]  J. Tuomela,et al.  On the numerical solution of involutive ordinary differential systems , 2000 .

[18]  B. Mourrain Isolated points, duality and residues , 1997 .

[19]  Robert M. Corless,et al.  A reordered Schur factorization method for zero-dimensional polynomial systems with multiple roots , 1997, ISSAC.

[20]  Bernard Mourrain,et al.  Computing the Isolated Roots by Matrix Methods , 1998, J. Symb. Comput..

[21]  Yuri A. Blinkov,et al.  Involutive bases of polynomial ideals , 1998, math/9912027.

[22]  Long Quan,et al.  Linear N-Point Camera Pose Determination , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Bernard Mourrain,et al.  A New Criterion for Normal Form Algorithms , 1999, AAECC.

[24]  Bernard Mourrain,et al.  Solving projective complete intersection faster , 2000, ISSAC.

[25]  B. Triggs,et al.  Camera Pose Revisited -- New Linear Algorithms , 2000 .

[26]  B. Sturmfels,et al.  Grbner Deformations of Hypergeometric Differential Equations , 2000 .

[27]  Tomas Sauer,et al.  H-bases for polynomial interpolation and system solving , 2000, Adv. Comput. Math..

[28]  Andrew J. Sommese,et al.  Numerical Decomposition of the Solution Sets of Polynomial Systems into Irreducible Components , 2000, SIAM J. Numer. Anal..

[29]  G. Reid,et al.  Fast differential elimination in C: The CDiffElim environment ? ? This program can be downloaded fro , 2001 .

[30]  G. Reid,et al.  Differential Elimination–Completion Algorithms for DAE and PDAE , 2001 .

[31]  Philippe Trébuchet Vers une résolution stable et rapide des équations algébriques , 2002 .

[32]  Chris Smith,et al.  Geometric completion of differential systems using numeric-symbolic continuation , 2002, SIGS.

[33]  Zhanyi Hu,et al.  A Note on the Number of Solutions of the Noncoplanar P4P Problem , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  D. Jeffrey,et al.  AN EXPLORATION OF HOMOTOPY SOLVING IN MAPLE , 2003 .

[35]  Jianliang Tang,et al.  Complete Solution Classification for the Perspective-Three-Point Problem , 2003, IEEE Trans. Pattern Anal. Mach. Intell..