Billion Q-factor in silicon WGM resonators

Optical whispering gallery mode (WGM) resonators allow combination of small mode volume with high Q-factor. Silicon is a major material for modern microelectronics and photonics. However, relatively low Q-factors of optical Si microresonators demonstrated so far have limited some promising applications. We report what we believe is first time measurement of a Q-factor of 1.2×109 in millimeter scale crystalline silicon optical resonators at 1550 nm wavelength. A novel silicon hemispherical coupler allowed us to reach up to 35% of coupling efficiency.

[1]  M. Gorodetsky,et al.  Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes , 2018, Nature Photonics.

[2]  Luke Theogarajan,et al.  An optical-frequency synthesizer using integrated photonics , 2018, Nature.

[3]  Rainer Leonhardt,et al.  Ultra-high Q terahertz whispering-gallery modes in a silicon resonator , 2018, 1802.00549.

[4]  M. Gorodetsky,et al.  Dissipative Kerr solitons in optical microresonators , 2015, Science.

[5]  Michael L. Gorodetsky,et al.  Self-injection locking of a laser diode to a high-Q WGM microresonator , 2017 .

[6]  A. Khalaidovski,et al.  Anomalous optical surface absorption in nominally pure silicon samples at 1550 nm , 2017 .

[7]  Luke Theogarajan,et al.  An optical-frequency synthesizer using integrated photonics , 2017, Nature.

[8]  M. Gorodetsky,et al.  Soliton dual frequency combs in crystalline microresonators. , 2016, Optics letters.

[9]  B. Lantz,et al.  Cryogenically cooled ultra low vibration silicon mirrors for gravitational wave observatories , 2017 .

[10]  Kerry J. Vahala,et al.  Microresonator soliton dual-comb spectroscopy , 2016, Science.

[11]  M. Lipson,et al.  Coherent mid-infrared frequency combs in silicon-microresonators in the presence of Raman effects. , 2016, Optics express.

[12]  Michal Lipson,et al.  Modelocked mid-infrared frequency combs in a silicon microresonator , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[13]  C. Lecaplain,et al.  Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials , 2016, Nature Communications.

[14]  M. Gorodetsky,et al.  Generation of platicons and frequency combs in optical microresonators with normal GVD by modulated pump , 2015, 1508.06850.

[15]  A. A. Savchenkov,et al.  High spectral purity Kerr frequency comb radio frequency photonic oscillator , 2015, Nature Communications.

[16]  Robert Lewis Reuben,et al.  Diamond machining of silicon: A review of advances in molecular dynamics simulation , 2015 .

[17]  M. Gorodetsky,et al.  Temporal solitons in optical microresonators , 2012, Nature Photonics.

[18]  Michael L. Gorodetsky,et al.  Analytical estimates of eigenfrequencies, dispersion, and field distribution in whispering gallery resonators , 2013 .

[19]  Yi Yu,et al.  Nonlinear absorption and refraction in crystalline silicon in the mid‐infrared , 2013 .

[20]  Gianpietro Cagnoli,et al.  Bulk optical absorption of high resistivity silicon at 1550 nm. , 2013, Optics letters.

[21]  A. Khalaidovski,et al.  Indication for dominating surface absorption in crystalline silicon test masses at 1550 nm , 2013, 1304.4126.

[22]  M. J. Shaw,et al.  Ultralow-loss silicon ring resonators , 2012, The 9th International Conference on Group IV Photonics (GFP).

[23]  Albert Schliesser,et al.  Mid-infrared frequency combs , 2012, Nature Photonics.

[24]  A. Matsko,et al.  Sensitivity of terahertz photonic receivers , 2008 .

[25]  G. Agrawal,et al.  Nonlinear optical phenomena in silicon waveguides: modeling and applications. , 2007, Optics express.

[26]  H. Driel,et al.  Two-photon absorption and Kerr coefficients of silicon for 850–2200nm , 2007 .

[27]  Vladimir S. Ilchenko,et al.  Ultrahigh optical Q factors of crystalline resonators in the linear regime , 2006 .

[28]  A. Matsko,et al.  Optical resonators with whispering-gallery modes-part II: applications , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[29]  Oskar Painter,et al.  Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator. , 2006, Optics express.

[30]  O. Painter,et al.  Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment. , 2005, Optics express.

[31]  K. Vahala,et al.  Dynamical thermal behavior and thermal self-stability of microcavities , 2004, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[32]  M. Gorodetsky,et al.  Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes , 1998, physics/9805030.

[33]  Vladimir S. Ilchenko,et al.  High-coherence diode laser with optical feedback via a microcavity with 'whispering gallery' modes , 1996 .

[34]  Vladimir S. Ilchenko,et al.  Quality-factor and nonlinear properties of optical Whispering-Gallery modes , 1989 .