Furuta's Pendulum: A Conservative Nonlinear Model for Theory and Practise

Furuta's pendulum has been an excellent benchmark for the automatic control community in the last years, providing, among others, a better understanding of model-based Nonlinear Control Techniques. Since most of these techniques are based on invariants and/or integrals of motion then, the dynamic model plays an important role. This paper describes, in detail, the successful dynamical model developed for the available laboratory pendulum. The success relies on a basic dynamical model derived from Classical Mechanics which has been augmented to compensate the non-conservative torques. Thus, the quasi-conservative “practical” model developed allows to design all the controllers as if the system was strictly conservative. A survey of all the nonlinear controllers designed and experimentally tested on the available laboratory pendulum is also reported.

[1]  F. Gordillo,et al.  Swinging up the Furuta pendulum by the speed gradient method , 2001, 2001 European Control Conference (ECC).

[2]  Karl Johan Åström,et al.  Global Bifurcations in the Futura Pendulum , 1998 .

[3]  Katsuhisa Furuta,et al.  Swinging up a pendulum by energy control , 1996, Autom..

[4]  L. Praly,et al.  Adding integrations, saturated controls, and stabilization for feedforward systems , 1996, IEEE Trans. Autom. Control..

[5]  Juan Humberto Sossa Azuela,et al.  Control of the Furuta Pendulum by using a Lyapunov function , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[6]  Anton S. Shiriaev,et al.  Friction compensation in the Furuta pendulum for stabilizing rotational modes , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[7]  José Ángel Acosta,et al.  A new swing-up law for the Furuta pendulum , 2003 .

[8]  J. W. Humberston Classical mechanics , 1980, Nature.

[9]  Javier Aracil,et al.  Local bifurcation Analysis in the Furuta Pendulum via Normal Forms , 2000, Int. J. Bifurc. Chaos.

[10]  José Ángel Acosta,et al.  On Singular Perturbations of Unstable Underactuated Mechanical Systems With Underactuation Degree ≥ 1 , 2008 .

[11]  Alexander L. Fradkov Swinging control of nonlinear oscillations , 1996 .

[12]  A. Teel A nonlinear small gain theorem for the analysis of control systems with saturation , 1996, IEEE Trans. Autom. Control..

[13]  Alessandro Astolfi,et al.  Interconnection and damping assignment passivity-based control of mechanical systems with underactuation degree one , 2004, Proceedings of the 2004 American Control Conference.

[14]  Carlos Canudas de Wit,et al.  A new model for control of systems with friction , 1995, IEEE Trans. Autom. Control..

[15]  J. A. Acosta LINEALIZACI ON POR REALIMENTACI ON CONSTRUCTIVA DE SISTEMAS MEC ANICOS CON GRADO DE SUBACTUACI ON 1 INESTABLES CON FRICCI ON , 2007 .

[16]  R. Murray,et al.  Differential flatness and absolute equivalence , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[17]  José Ángel Acosta,et al.  NONLINEAR CONTROL STRATEGIES FOR THE FURUTA PENDULUM , 2001 .

[18]  Leonid B. Freidovich,et al.  Virtual-Holonomic-Constraints-Based Design of Stable Oscillations of Furuta Pendulum: Theory and Experiments , 2007, IEEE Transactions on Robotics.

[19]  M. Lopez-Martinez,et al.  Constructive feedback linearization of underactuated mechanical systems with 2-DOF , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[20]  A. Isidori,et al.  Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems , 1991 .

[21]  J.Á. Acosta,et al.  A Nonlinear Strategy to Control Unstable Underactuated Mechanical Systems with Underactuation > 1. Applications to Control Augmentations † , 2009 .

[22]  A. Schaft L2-Gain and Passivity Techniques in Nonlinear Control. Lecture Notes in Control and Information Sciences 218 , 1996 .

[23]  Naomi Ehrich Leonard,et al.  Stabilization of the pendulum on a rotor arm by the method of controlled Lagrangians , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[24]  J. Aracil,et al.  Stabilization of oscillations in the inverted pendulum , 2002 .

[25]  R. Olfati-Saber Cascade normal forms for underactuated mechanical systems , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[26]  José Ángel Acosta,et al.  Passivation of underactuated systems with physical damping , 2004 .

[27]  Olav Egeland,et al.  On global properties of passivity-based control of an inverted pendulum , 2000 .

[28]  K. Åström,et al.  A New Strategy for Swinging Up an Inverted Pendulum , 1993 .

[29]  R. Olfati-Saber Fixed point controllers and stabilization of the cart-pole system and the rotating pendulum , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[30]  Arjan van der Schaft,et al.  Physical Damping in IDA-PBC Controlled Underactuated Mechanical Systems , 2004, Eur. J. Control.

[31]  M. Gafvert Dynamic model based friction compensation on the Furuta pendulum , 1999, Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328).

[32]  M. Spong,et al.  Stabilization of Underactuated Mechanical Systems Via Interconnection and Damping Assignment , 2000 .

[33]  Naomi Ehrich Leonard,et al.  Controlled Lagrangians and the stabilization of mechanical systems. I. The first matching theorem , 2000, IEEE Trans. Autom. Control..

[34]  Emilio Freire,et al.  Bifurcation Behavior of the Furuta Pendulum , 2007, Int. J. Bifurc. Chaos.

[35]  V. Jurdjevic,et al.  Controllability and stability , 1978 .

[36]  Rolf Johansson,et al.  Estimación de la Fuerza de Contacto para el Control de Robots Manipuladores con Movimientos Restringidos , 2004 .

[37]  Javier Aracil,et al.  A Controller for Swinging-Up and Stabilizing the Inverted Pendulum , 2008 .

[38]  David Angeli Almost global stabilization of the inverted pendulum via continuous state feedback , 2001, Autom..

[39]  F. Altpeter Friction modeling, identification and compensation , 1999 .

[40]  José Ángel Acosta,et al.  A New SG Law for Swinging the Furuta Pendulum Up , 2001 .

[41]  Philippe Martin,et al.  A Lie-Backlund approach to equivalence and flatness of nonlinear systems , 1999, IEEE Trans. Autom. Control..

[42]  S. Sastry Nonlinear Systems: Analysis, Stability, and Control , 1999 .

[43]  A. Isidori Nonlinear Control Systems , 1985 .

[44]  Alessandro Astolfi,et al.  Total Energy Shaping Control of Mechanical Systems: Simplifying the Matching Equations Via Coordinate Changes , 2007, IEEE Transactions on Automatic Control.

[45]  Romeo Ortega,et al.  Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment , 2002, IEEE Trans. Autom. Control..

[46]  Hebertt Sira-Ramírez,et al.  A linear differential flatness approach to controlling the Furuta pendulum , 2007, IMA J. Math. Control. Inf..

[47]  B. R. Andrievskii,et al.  CONTROL OF NONLINEAR VIBRATIONS OF MECHANICAL SYSTEMS VIA THE METHOD OF VELOCITY GRADIENT , 1996 .

[48]  Warren White,et al.  Control of nonlinear underactuated systems , 1999 .

[49]  M. Lopez-Martinez,et al.  Constructive feedback linearization of mechanical systems with friction and underactuation degree one , 2007, 2007 European Control Conference (ECC).

[50]  David Rakhmilʹevich Merkin,et al.  Introduction to the Theory of Stability , 1996 .

[51]  M. López Martínez,et al.  Linealización por Realimentación Constructiva de Sistemas Mecánicos con Grado de Subactuación 1 Inestables con Fricción , 2007 .

[52]  Rogelio Lozano,et al.  Stabilization of the Furuta Pendulum Around Its Homoclinic Orbit , 2001 .