Gradients of Rac1 Nanoclusters Support Spatial Patterns of Rac1 Signaling.

[1]  P. Lipp,et al.  C2-domain mediated nano-cluster formation increases calcium signaling efficiency , 2016, Scientific Reports.

[2]  B. Gerstman,et al.  The Ebola virus protein VP40 hexamer enhances the clustering of PI(4,5)P2 lipids in the plasma membrane. , 2016, Physical chemistry chemical physics : PCCP.

[3]  K. Hahn,et al.  FRET binding antenna reports spatiotemporal dynamics of GDI-Cdc42 GTPase interactions , 2016, Nature chemical biology.

[4]  O. Pertz,et al.  The dynamics of spatio-temporal Rho GTPase signaling : formation of signaling patterns , 2022 .

[5]  A. Wittinghofer,et al.  Galectin-1 dimers can scaffold Raf-effectors to increase H-ras nanoclustering , 2016, Scientific Reports.

[6]  Andrew Mugler,et al.  Cooperative Clustering Digitizes Biochemical Signaling and Enhances its Fidelity. , 2016, Biophysical journal.

[7]  B. Goud,et al.  The emerging role of phosphoinositide clustering in intracellular trafficking and signal transduction , 2016, F1000Research.

[8]  A. Wittinghofer,et al.  Selective Targeting of the KRAS G12C Mutant: Kicking KRAS When It's Down. , 2016, Cancer cell.

[9]  Satyajit Mayor,et al.  Actomyosin dynamics drive local membrane component organization in an in vitro active composite layer , 2016, Proceedings of the National Academy of Sciences.

[10]  Tai-De Li,et al.  Force Feedback Controls Motor Activity and Mechanical Properties of Self-Assembling Branched Actin Networks , 2016, Cell.

[11]  Sean R. Collins,et al.  Locally excitable Cdc42 signals steer cells during chemotaxis , 2015, Nature Cell Biology.

[12]  J. Unnikrishnan,et al.  On characterizing membrane protein clusters with model-free spatial correlation approaches , 2015, bioRxiv.

[13]  M. Dahan,et al.  Predictive Spatiotemporal Manipulation of Signaling Perturbations Using Optogenetics. , 2015, Biophysical journal.

[14]  Daniel J. Lew,et al.  Polarity establishment requires localized activation of Cdc42 , 2015, The Journal of cell biology.

[15]  Yongdeng Zhang,et al.  Nanoscale Landscape of Phosphoinositides Revealed by Specific Pleckstrin Homology (PH) Domains Using Single-molecule Superresolution Imaging in the Plasma Membrane* , 2015, The Journal of Biological Chemistry.

[16]  Roland Eils,et al.  One, two or three? Probing the stoichiometry of membrane proteins by single-molecule localization microscopy , 2015, Scientific Reports.

[17]  M. Dahan,et al.  Probing the target search of DNA-binding proteins in mammalian cells using TetR as model searcher , 2015, Nature Communications.

[18]  J. Blenis,et al.  ERK reinforces actin polymerization to power persistent edge protrusion during motility , 2015, Science Signaling.

[19]  M. Rao,et al.  Transbilayer Lipid Interactions Mediate Nanoclustering of Lipid-Anchored Proteins , 2015, Cell.

[20]  T. Schmidt,et al.  Visualization of HRas Domains in the Plasma Membrane of Fibroblasts. , 2015, Biophysical journal.

[21]  Yong Zhou,et al.  Ras nanoclusters: Versatile lipid-based signaling platforms. , 2015, Biochimica et biophysica acta.

[22]  Sulagna Das,et al.  Single-molecule tracking of small GTPase Rac1 uncovers spatial regulation of membrane translocation and mechanism for polarized signaling , 2015, Proceedings of the National Academy of Sciences.

[23]  Daniel Choquet,et al.  Nanoscale segregation of actin nucleation and elongation factors determines dendritic spine protrusion , 2014, The EMBO journal.

[24]  Ken Jacobson,et al.  Nanoclustering as a dominant feature of plasma membrane organization , 2014, Journal of Cell Science.

[25]  Ned S Wingreen,et al.  Enzyme clustering accelerates processing of intermediates through metabolic channeling , 2014, Nature Biotechnology.

[26]  R. Stahelin,et al.  Cellular and molecular interactions of phosphoinositides and peripheral proteins. , 2014, Chemistry and physics of lipids.

[27]  Alexis Gautreau,et al.  Steering cell migration: lamellipodium dynamics and the regulation of directional persistence , 2014, Nature Reviews Molecular Cell Biology.

[28]  Garud Iyengar,et al.  A cellular solution to an information-processing problem , 2014, Proceedings of the National Academy of Sciences.

[29]  S. Smirnakis,et al.  Dynamic control of excitatory synapse development by a Rac1 GEF/GAP regulatory complex. , 2014, Developmental cell.

[30]  O. Pertz,et al.  Phosphatidylinositol 5-phosphate regulates invasion through binding and activation of Tiam1 , 2014, Nature Communications.

[31]  J. Condeelis,et al.  A Trio-Rac1-PAK1 signaling axis drives invadopodia disassembly , 2014, Nature Cell Biology.

[32]  Chenqi Xu,et al.  Ionic protein-lipid interaction at the plasma membrane: what can the charge do? , 2014, Trends in biochemical sciences.

[33]  M. Lakadamyali,et al.  Single-molecule evaluation of fluorescent protein photoactivation efficiency using an in vivo nanotemplate , 2014, Nature Methods.

[34]  K. Burridge,et al.  The on-off relationship of Rho and Rac during integrin-mediated adhesion and cell migration , 2014, Small GTPases.

[35]  P. Iglesias,et al.  An Excitable Signal Integrator Couples to an Idling Cytoskeletal Oscillator to Drive Cell Migration , 2013, Nature Cell Biology.

[36]  G. Scita,et al.  Membrane and actin dynamics interplay at lamellipodia leading edge. , 2013, Current opinion in cell biology.

[37]  J. Backer,et al.  Phosphatidylinositol-3,4,5-trisphosphate: tool of choice for class I PI 3-kinases. , 2013, BioEssays : news and reviews in molecular, cellular and developmental biology.

[38]  S. Hell,et al.  Phosphatidylinositol 4,5-bisphosphate clusters act as molecular beacons for vesicle recruitment , 2013, Nature Structural &Molecular Biology.

[39]  Keiji Naruse,et al.  Rac1 Recruitment to the Archipelago Structure of the Focal Adhesion through the Fluid Membrane as Revealed by Single-Molecule Analysis , 2013, Cytoskeleton.

[40]  Michal Daszykowski,et al.  Revised DBSCAN algorithm to cluster data with dense adjacent clusters , 2013 .

[41]  Matthew J. Davis,et al.  RAC1P29S is a spontaneously activating cancer-associated GTPase , 2013, Proceedings of the National Academy of Sciences.

[42]  John G. Collard,et al.  Tiam1 interaction with the PAR complex promotes talin-mediated Rac1 activation during polarized cell migration , 2012, The Journal of cell biology.

[43]  Daniel Choquet,et al.  Integrins β1 and β3 exhibit distinct dynamic nanoscale organizations inside focal adhesions , 2012, Nature Cell Biology.

[44]  G. von Dassow,et al.  A Rho GTPase signal treadmill backs a contractile array. , 2012, Developmental cell.

[45]  D. Richards,et al.  Segregation of PIP2 and PIP3 into distinct nanoscale regions within the plasma membrane , 2012, Biology Open.

[46]  J. D. Erickson,et al.  The C-terminal di-arginine motif of Cdc42 is essential for binding to phosphatidylinositol 4,5 bisphosphate-containing membranes and inducing cellular transformation , 2012 .

[47]  M. Kazanietz,et al.  Rac signaling in breast cancer: a tale of GEFs and GAPs. , 2012, Cellular signalling.

[48]  Yi Zheng,et al.  A palmitoylation switch mechanism regulates Rac1 function and membrane organization , 2012, The EMBO journal.

[49]  O. Weiner,et al.  A pharmacological cocktail for arresting actin dynamics in living cells , 2011, Molecular biology of the cell.

[50]  Hayder Amin,et al.  Membrane protein sequestering by ionic protein-lipid interactions , 2011, Nature.

[51]  E. Derivery,et al.  Clathrin is required for Scar/Wave-mediated lamellipodium formation , 2011, Journal of Cell Science.

[52]  O. Pascual,et al.  Regulation of glycine receptor diffusion properties and gephyrin interactions by protein kinase C , 2011, The EMBO journal.

[53]  Benjamin B. Machta,et al.  Correlation Functions Quantify Super-Resolution Images and Estimate Apparent Clustering Due to Over-Counting , 2011, PloS one.

[54]  E. Formstecher,et al.  SH3BP1, an exocyst-associated RhoGAP, inactivates Rac1 at the front to drive cell motility. , 2011, Molecular cell.

[55]  M. Ehlers,et al.  Rapid blue light induction of protein interactions in living cells , 2010, Nature Methods.

[56]  John Kuriyan,et al.  Molecular mechanisms in signal transduction at the membrane , 2010, Nature Structural &Molecular Biology.

[57]  Olivier Pertz,et al.  Spatio-temporal Rho GTPase signaling – where are we now? , 2010, Journal of Cell Science.

[58]  Boris N. Kholodenko,et al.  Signalling ballet in space and time , 2010, Nature Reviews Molecular Cell Biology.

[59]  Arnauld Sergé,et al.  Signalling complexes and clusters: functional advantages and methodological hurdles , 2010, Journal of Cell Science.

[60]  M. Kirschner,et al.  Activation of the WAVE complex by coincident signals controls actin assembly. , 2009, Molecular cell.

[61]  Gaudenz Danuser,et al.  Coordination of Rho GTPase activities during cell protrusion , 2009, Nature.

[62]  Kenneth M. Yamada,et al.  Random versus directionally persistent cell migration , 2009, Nature Reviews Molecular Cell Biology.

[63]  Manuel Théry,et al.  Simple and rapid process for single cell micro-patterning. , 2009, Lab on a chip.

[64]  John J Rhoden,et al.  Spontaneous phosphoinositide 3-kinase signaling dynamics drive spreading and random migration of fibroblasts , 2009, Journal of Cell Science.

[65]  J. Hancock,et al.  Using plasma membrane nanoclusters to build better signaling circuits. , 2008, Trends in cell biology.

[66]  J. Lippincott-Schwartz,et al.  High-density mapping of single-molecule trajectories with photoactivated localization microscopy , 2008, Nature Methods.

[67]  Tianhai Tian,et al.  Plasma membrane nanoswitches generate high-fidelity Ras signal transduction , 2007, Nature Cell Biology.

[68]  Manuel Théry,et al.  Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity , 2006, Proceedings of the National Academy of Sciences.

[69]  T. Meyer,et al.  PI(3,4,5)P3 and PI(4,5)P2 Lipids Target Proteins with Polybasic Clusters to the Plasma Membrane , 2006, Science.

[70]  G. von Dassow,et al.  Rho GTPase activity zones and transient contractile arrays , 2006, BioEssays : news and reviews in molecular, cellular and developmental biology.

[71]  M. Overduin,et al.  Cell Migration and Signaling Specificity Is Determined by the Phosphatidylserine Recognition Motif of Rac1* , 2006, Journal of Biological Chemistry.

[72]  Robert G Parton,et al.  H-ras, K-ras, and inner plasma membrane raft proteins operate in nanoclusters with differential dependence on the actin cytoskeleton , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[73]  J. Hancock,et al.  Ras plasma membrane signalling platforms. , 2005, The Biochemical journal.

[74]  D. Yamazaki,et al.  PtdIns(3,4,5)P3 binding is necessary for WAVE2-induced formation of lamellipodia , 2004, Nature Cell Biology.

[75]  Yuan Gao,et al.  Oligomerization of Rac1 GTPase Mediated by the Carboxyl-terminal Polybasic Domain* , 2001, The Journal of Biological Chemistry.

[76]  T. Meyer,et al.  Spatial Sensing in Fibroblasts Mediated by 3′ Phosphoinositides , 2000, The Journal of cell biology.

[77]  M. Schwartz Integrins, Oncogenes, and Anchorage Independence , 1997, The Journal of cell biology.

[78]  H Schindler,et al.  Single-molecule microscopy on model membranes reveals anomalous diffusion. , 1997, Biophysical journal.

[79]  A. Wittinghofer Ras Superfamily Small G Proteins: Biology and Mechanisms 1 , 2014, Springer Vienna.