Synthesis and applications of silicon-containing alpha-amino acids.

Amino acids serve not only as monomers for proteins and enzymes but also as important players in signal transduction pathways. They belong to the abundant feedstock of the pharmaceutical, food science and agrochemical industries, and some are used as catalysts or ligand components. In recent years, non-proteogenic amino acids have taken on important roles. This tutorial review summarises the progress in the development of strategies to construct silicon-containing alpha-amino acid frameworks and the studies concerned with their structure and activity. It shall be of interest for the synthesis and biosciences communities.

[1]  H. Yamanaka,et al.  Enzymatic preparation of optically active 3-trimethylsilylalanine , 1996, Applied Microbiology and Biotechnology.

[2]  K. Moeller,et al.  Microelectrode arrays and ceric ammonium nitrate: a simple strategy for developing new site-selective synthetic methods. , 2008, Journal of the American Chemical Society.

[3]  P. Dauban,et al.  Regioselective electrophilic substitution of 2,3-aziridino-γ-lactones: preliminary studies aimed at the synthesis of α,α-disubstituted α- or β-amino acids , 2008 .

[4]  T. Skrydstrup,et al.  Stereocontrolled synthesis of methyl silanediol peptide mimics. , 2007, Journal of Organic Chemistry.

[5]  K. Moeller,et al.  Building functionalized peptidomimetics: use of electroauxiliaries for introducing N-acyliminium ions into peptides. , 2006, Journal of the American Chemical Society.

[6]  E. Giralt,et al.  Replacement of a proline with silaproline causes a 20-fold increase in the cellular uptake of a Pro-rich peptide. , 2006, Journal of the American Chemical Society.

[7]  S. Sieburth,et al.  Silanediol Protease Inhibitors: From Conception to Validation , 2006 .

[8]  C. Bolm,et al.  Synthesis of novel silylated 1,2,4-triazin-5-ones , 2005 .

[9]  C. Bolm,et al.  Enantiopure α-Silyl-Substituted α-Hydroxyacetic Acids Using O-H Insertion Methodology and Boron-Based Asymmetric Reductions , 2005 .

[10]  S. Sieburth,et al.  α-Trialkylsilyl Amino Acid Stability , 2005 .

[11]  R. Dorrington,et al.  Hydantoin-hydrolysing enzymes for the enantioselective production of amino acids: new insights and applications , 2004 .

[12]  Richard J. Smith,et al.  Towards Functionalized Silicon‐Containing α‐Amino Acids: Asymmetric Syntheses of Sila Analogs of Homoserine and Homomethionine , 2004 .

[13]  Paul Schimmel,et al.  Incorporation of nonnatural amino acids into proteins. , 2004, Annual review of biochemistry.

[14]  S. Sieburth,et al.  Enantioselective α-Silyl Amino Acid Synthesis by Reverse-Aza-Brook Rearrangement , 2003 .

[15]  K. Moeller,et al.  Building functionalized peptidomimetics: new electroauxiliaries and the use of a chemical oxidant for introducing N-acyliminium ions into peptides. , 2003, Organic letters.

[16]  S. Sieburth,et al.  Asymmetric synthesis of alpha-amino allyl, benzyl, and propargyl silanes by metalation and rearrangement. , 2003, Organic letters.

[17]  C. Bolm,et al.  Intermolecular rhodium(II)-catalyzed reactions with silicon-substituted carbonyl ylides. , 2002, Organic letters.

[18]  K. Drauz,et al.  Synthesis and use of alpha-silyl-substituted alpha-hydroxyacetic acids. , 2002, Organic letters.

[19]  R. Tacke,et al.  Derivatives of β-(Trimethylsilyl)alanine with SiCH2NH2, SiCH2OH, or SiCH2SH Functionality: Synthesis of the Silicon-Containing α-Amino Acids rac- and (R)-Me2Si(CH2R)CH2CH(NH2)COOH (R = NH2, OH, SH)† , 2002 .

[20]  J. Norton,et al.  Asymmetric Synthesis of Silylated α-Amino Acid Esters through Dynamic Kinetic Resolution , 2002 .

[21]  K. Moeller,et al.  Silyl-substituted amino acids: new routes to the construction of selectively functionalized peptidomimetics. , 2002, Organic letters.

[22]  A. Aubry,et al.  Influence of silaproline on peptide conformation and bioactivity. , 2002, Journal of the American Chemical Society.

[23]  K. Günther,et al.  Syntheses of racemic and non-racemic silicon- and germanium-containing α-amino acids of the formula type H2NCH(CH2ElR3)COOH (El=Si, Ge; R=organyl) and incorporation of d-H2NCH(CH2SiMe3)COOH and d-H2NCH(CH2GeMe3)COOH into biologically active decapeptides: a study on C/Si/Ge bioisosterism , 2001 .

[24]  P G Schultz,et al.  Expanding the Genetic Code of Escherichia coli , 2001, Science.

[25]  C. Syldatk,et al.  Enzymatic synthesis of enantiomerically enriched d- and l-3-silylated alanines by deracemization of dl-5-silylmethylated hydantoins , 2001 .

[26]  R. Tacke,et al.  Syntheses and Properties of Silicon- and Germanium-Containing α-Amino Acids and Peptides: A Study on C/Si/Ge Bioisosterism§ , 2000 .

[27]  K. Drauz,et al.  α-Trialkylsilyl-Substitutedα-Amino Acids , 2000 .

[28]  C. Syldatk,et al.  Microbial and Enzymatic Synthesis of Optically Pure D- and L-3-Trimethylsilyl-alanine by Deracemization of D,L-5-Trimethylsilyl-methyl-hydantion , 2000 .

[29]  Jean Martínez,et al.  Synthesis of Silaproline, a New Proline Surrogate , 2000 .

[30]  R. Tacke,et al.  Sila-Substitution of the α-Amino Acid Proline: Synthesis of rac- and (R)-4,4-Dimethyl-4-sila-proline Ethyl Ester , 2000 .

[31]  C. Ehrhardt,et al.  Design, synthesis and biological evaluation of selective boron-containing thrombin inhibitors. , 1999, Bioorganic & medicinal chemistry.

[32]  M. Sibi,et al.  Synthesis of silicon containing alanines , 1998 .

[33]  Richard J. Smith,et al.  Synthesis of silicon-containing α-amino acids and hydantoins , 1997 .

[34]  H. Yamanaka,et al.  Enzymatic preparation of d-p -trimethylsilylphenylalanine , 1997, Applied Microbiology and Biotechnology.

[35]  J. L. Gleason,et al.  Highly Practical Methodology for the Synthesis of d- and l-α-Amino Acids, N-Protected α-Amino Acids, and N-Methyl-α-amino Acids , 1997 .

[36]  R. Murray,et al.  Chiral alpha -hydroxy acids: racemic 2-hydroxy-2,3,3-trimethylbutanoic acid and 2-hydroxy-2-trimethylsilylpropanoic acid. , 1996, Acta Crystallographica Section C: Crystal Structure Communications.

[37]  D. Cole,et al.  SILICON-CONTAINING AMINO ACIDS AND PEPTIDES. ASYMMETRIC SYNTHESIS OF (TRIALKYLSILYL)ALANINES , 1995 .

[38]  B. Weidmann (Trimethylsilyl)alanine: a Metabolically Stable 'Bio-Isostere' for Phenylalanine , 1992, CHIMIA.

[39]  Davidr . Evans,et al.  The asymmetric synthesis of .alpha.-amino acids. Electrophilic azidation of chiral imide enolates, a practical approach to the synthesis of (R)- and (S)-.alpha.-azido carboxylic acids , 1990 .

[40]  D. Seebach,et al.  Resolution and use in α-amino acid synthesis of imidazolidinone glycine derivatives , 1988 .

[41]  J. Yoshida,et al.  Electrochemical oxidation of ?-silylcarbamates1 , 1987 .

[42]  U. Schöllkopf Enantioselective synthesis of nonproteinogenic amino acids , 1983 .

[43]  D. Gertner,et al.  971. Synthesis of DL-p-trimethylsilylphenylalanine , 1963 .

[44]  A. Ritter,et al.  Neue Silicium‐organische Verbindungen: Silicoaminosäuren und Silazan‐carbonsäureester , 1956 .

[45]  L. H. Sommer,et al.  The Polar Effects of Organosilicon Substituents in Aliphatic Amines1,2 , 1951 .

[46]  B. F. Daubert,et al.  Effect of Organosilicon Substituents on the Basic Strength of Amines , 1951 .