Emerging concepts in deep Raman spectroscopy of biological tissue.

This article reviews emerging Raman techniques for deep, non-invasive characterisation of biological tissues. As generic analytical tools, the new methods pave the way for a host of new applications including non-invasive bone disease diagnosis, chemical characterisation of 'stone-like' materials in urology and cancer detection in a number of organs.

[1]  I. Ellis,et al.  Mammographic features of ductal carcinoma in situ (DCIS) present on previous mammography. , 1999, Clinical radiology.

[2]  Michael D Morris,et al.  Transcutaneous fiber optic Raman spectroscopy of bone using annular illumination and a circular array of collection fibers. , 2006, Journal of biomedical optics.

[3]  R. Alfano,et al.  Raman, fluorescence, and time-resolved light scattering as optical diagnostic techniques to separate diseased and normal biomedical media. , 1992, Journal of photochemistry and photobiology. B, Biology.

[4]  Hugh Barr,et al.  Near‐infrared Raman spectroscopy for the classification of epithelial pre‐cancers and cancers , 2002 .

[5]  Pavel Matousek,et al.  Efficient Rejection of Fluorescence from Raman Spectra Using Picosecond Kerr Gating , 1999 .

[6]  Pavel Matousek,et al.  Inverse Spatially Offset Raman Spectroscopy for Deep Noninvasive Probing of Turbid Media , 2006, Applied spectroscopy.

[7]  N. Stone,et al.  The use of Raman spectroscopy to identify and characterize transitional cell carcinoma in vitro , 2004, BJU international.

[8]  Pavel Matousek,et al.  Deep non-invasive Raman spectroscopy of living tissue and powders. , 2007, Chemical Society reviews.

[9]  Mark Wright,et al.  Urological applications of Raman spectroscopy for improved malignant diagnostics , 2004, SPIE BiOS.

[10]  P. Matousek,et al.  Depth Profiling in Diffusely Scattering Media Using Raman Spectroscopy and Picosecond Kerr Gating , 2005, Applied spectroscopy.

[11]  Pavel Matousek,et al.  Use of picosecond Kerr-gated Raman spectroscopy to suppress signals from both surface and deep layers in bladder and prostate tissue. , 2005, Journal of biomedical optics.

[12]  Stefan Keller,et al.  NIR FT Raman spectroscopy—a new tool in medical diagnostics , 1997 .

[13]  Pavel Matousek,et al.  Fluorescence background suppression in Raman spectroscopy using combined Kerr gated and shifted excitation Raman difference techniques , 2002 .

[14]  Andrew J Berger,et al.  Chemical concentration measurement in blood serum and urine samples using liquid-core optical fiber Raman spectroscopy. , 2007, Applied optics.

[15]  Pavel Matousek,et al.  Deep Noninvasive Raman Spectroscopy of Turbid Media , 2008, Applied spectroscopy.

[16]  R. Richards-Kortum,et al.  Raman spectroscopy for the detection of cancers and precancers. , 1996, Journal of biomedical optics.

[17]  A. Goodship,et al.  Numerical Simulations of Subsurface Probing in Diffusely Scattering Media Using Spatially Offset Raman Spectroscopy , 2005, Applied spectroscopy.

[18]  S. Majumder,et al.  Depth-resolved fluorescence measurement in a layered turbid medium by polarized fluorescence spectroscopy. , 2005, Optics letters.

[19]  Pavel Matousek,et al.  Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate , 2001 .

[20]  Pavel Matousek,et al.  Noninvasive Raman Spectroscopy of Human Tissue in vivo , 2006, Applied spectroscopy.

[21]  J Wu,et al.  Three-dimensional imaging of objects embedded in turbid media with fluorescence and Raman spectroscopy. , 1995, Applied optics.

[22]  Yang Wang,et al.  Detection and characterization of human tissue lesions with near-infrared Raman spectroscopy , 1995, Photonics West.

[23]  William F. Finney,et al.  Bone tissue compositional differences in women with and without osteoporotic fracture. , 2006, Bone.

[24]  Pavel Matousek,et al.  Subsurface probing of calcifications with spatially offset Raman spectroscopy (SORS): future possibilities for the diagnosis of breast cancer. , 2007, The Analyst.

[25]  Michael D. Morris,et al.  Band-Target Entropy Minimization (BTEM) Applied to Hyperspectral Raman Image Data , 2003, Applied spectroscopy.

[26]  Pavel Matousek,et al.  Depth profiling of calcifications in breast tissue using picosecond Kerr-gated Raman spectroscopy. , 2007, The Analyst.

[27]  Radi Mj,et al.  Calcium oxalate crystals in breast biopsies. An overlooked form of microcalcification associated with benign breast disease. , 1989 .

[28]  Pavel Matousek,et al.  Noninvasive Authentication of Pharmaceutical Products through Packaging Using Spatially Offset Raman Spectroscopy , 2022 .

[29]  Pavel Matousek,et al.  Non‐invasive probing of pharmaceutical capsules using transmission Raman spectroscopy , 2007 .

[30]  Abigail S Haka,et al.  In vivo Raman spectral pathology of human atherosclerosis and vulnerable plaque. , 2006, Journal of biomedical optics.

[31]  Robert R. Alfano,et al.  Time-resolved fluorescence and photon migration studies in biomedical and model random media , 1997 .

[32]  R. Dasari,et al.  Diagnosing breast cancer by using Raman spectroscopy. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[33]  William F. Finney,et al.  Subsurface Probing in Diffusely Scattering Media Using Spatially Offset Raman Spectroscopy , 2005, Applied spectroscopy.

[34]  Pavel Matousek,et al.  Novel Assessment of Bone Using Time‐Resolved Transcutaneous Raman Spectroscopy , 2005, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[35]  Michael D. Morris,et al.  Kerr-gated picosecond Raman spectroscopy and Raman photon migration of equine bone tissue with 400-nm excitation , 2004, SPIE BiOS.

[36]  Pavel Matousek,et al.  Prospects for the diagnosis of breast cancer by noninvasive probing of calcifications using transmission Raman spectroscopy. , 2007, Journal of biomedical optics.

[37]  J. Roodenburg,et al.  In vivo detection of dysplastic tissue by Raman spectroscopy. , 2000, Analytical chemistry.

[38]  Subhadra Srinivasan,et al.  Noninvasive Raman tomographic imaging of canine bone tissue. , 2008, Journal of biomedical optics.

[39]  Pavel Matousek,et al.  Kerr-gated time-resolved Raman spectroscopy of equine cortical bone tissue. , 2005, Journal of biomedical optics.

[40]  Pavel Matousek,et al.  Picosecond Time-Resolved Raman Spectroscopy of Solids: Capabilities and Limitations for Fluorescence Rejection and the Influence of Diffuse Reflectance , 2001 .

[41]  H Koizumi,et al.  Higher-order brain function analysis by trans-cranial dynamic near-infrared spectroscopy imaging. , 1999, Journal of biomedical optics.

[42]  Brian C. Wilson,et al.  In vivo Near-infrared Raman Spectroscopy: Demonstration of Feasibility During Clinical Gastrointestinal Endoscopy¶ , 2000, Photochemistry and photobiology.

[43]  Anita Mahadevan-Jansen,et al.  Comparison of spectral variation from spectroscopy to spectral imaging. , 2007, Applied optics.

[44]  Subhadra Srinivasan,et al.  Image-guided Raman spectroscopic recovery of canine cortical bone contrast in situ. , 2008, Optics express.

[45]  Hugh Barr,et al.  Raman spectroscopy, a potential tool for the objective identification and classification of neoplasia in Barrett's oesophagus , 2003, The Journal of pathology.

[46]  N. Stone,et al.  Drop coating deposition Raman spectroscopy of protein mixtures. , 2007, The Analyst.

[47]  Landulfo Silveira,et al.  Raman spectroscopy study of atherosclerosis in human carotid artery. , 2005, Journal of biomedical optics.

[48]  P. Matousek,et al.  Bulk Raman Analysis of Pharmaceutical Tablets , 2006, Applied spectroscopy.

[49]  M. Morris,et al.  Application of vibrational spectroscopy to the study of mineralized tissues (review). , 2000, Journal of biomedical optics.

[50]  Wee Chew,et al.  Band-target entropy minimization (BTEM): An advanced method for recovering unknown pure component spectra. Application to the FTIR spectra of unstable organometallic mixtures , 2002 .

[51]  H. Bruining,et al.  In vitro and in vivo Raman spectroscopy of human skin. , 1998, Biospectroscopy.

[52]  Characterization and modelling of the hollow beam produced by a real conical lens , 2002, physics/0207088.

[53]  Pavel Matousek,et al.  Photon Migration in Raman Spectroscopy , 2004, Applied spectroscopy.

[54]  H. Barr,et al.  Raman Spectroscopy for Early Detection of Laryngeal Malignancy: Preliminary Results , 2000, The Laryngoscope.

[55]  R. Dasari,et al.  Identifying microcalcifications in benign and malignant breast lesions by probing differences in their chemical composition using Raman spectroscopy. , 2002, Cancer research.

[56]  N Stone,et al.  The use of Raman spectroscopy to identify and grade prostatic adenocarcinoma in vitro , 2003, British Journal of Cancer.

[57]  Michael D. Morris,et al.  Transcutaneous Raman spectroscopy of bone global sampling and ring/disk fiber optic probes , 2007, SPIE BiOS.

[58]  G. Bergmann,et al.  Die Intensität des Ramanspektrums polykristalliner Substanzen , 1967 .

[59]  Nirmala Ramanujam,et al.  Relationship between depth of a target in a turbid medium and fluorescence measured by a variable-aperture method. , 2002, Optics letters.

[60]  Michael D Morris,et al.  Subsurface and Transcutaneous Raman Spectroscopy and Mapping Using Concentric Illumination Rings and Collection with a Circular Fiber-Optic Array , 2007, Applied spectroscopy.

[61]  C. Eliasson,et al.  Noninvasive detection of concealed liquid explosives using Raman spectroscopy. , 2007, Analytical chemistry.

[62]  T Joshua Pfefer,et al.  Multiple-fiber probe design for fluorescence spectroscopy in tissue. , 2002, Applied optics.

[63]  William F. Finney,et al.  Subsurface Raman Spectroscopy and Mapping Using a Globally Illuminated Non-Confocal Fiber-Optic Array Probe in the Presence of Raman Photon Migration , 2006, Applied spectroscopy.

[64]  S. Arridge,et al.  Three-dimensional optical tomography of the premature infant brain , 2002, Physics in medicine and biology.

[65]  P. Matousek,et al.  Advanced transmission Raman spectroscopy: a promising tool for breast disease diagnosis. , 2008, Cancer research.