Gasochromic WO3 Nanostructures for the Detection of Hydrogen Gas: An Overview

Hydrogen is one of the most important gases that can potentially replace fossil fuels in the future. Nevertheless, it is highly explosive, and its leakage should be detected by reliable gas sensors for safe operation during storage and usage. Most hydrogen gas sensors operate at high temperatures, which introduces the risk of hydrogen explosion. Gasochromic WO3 sensors work based on changes in their optical properties and color variation when exposed to hydrogen gas. They can work at low or room temperatures and, therefore, are good candidates for the detection of hydrogen leakage with low risk of explosion. Once their morphology and chemical composition are carefully designed, they can be used for the realization of sensitive, selective, low-cost, and flexible hydrogen sensors. In this review, for the first time, we discuss different aspects of gasochromic WO3 gas sensor-based hydrogen detection. Pristine, heterojunction, and noble metal-decorated WO3 nanostructures are discussed for the detection of hydrogen gas in terms of changes in their optical properties or visible color. This review is expected to provide a good background for research work in the field of gas sensors.

[1]  Hyungtak Seo,et al.  Pd on MoO3 nanoplates as small-polaron-resonant eye-readable gasochromic and electrical hydrogen sensor , 2017 .

[2]  Jeffrey Dong,et al.  Catalytic hydrogen sensing using microheated platinum nanoparticle-loaded graphene aerogel , 2015 .

[3]  J. Libardi,et al.  Response to humidity of TiO2:WO3 sensors doped with V2O5: Influence of fabrication route , 2016 .

[4]  A. Gonzalez-Elipe,et al.  Formation of Subsurface W5+ Species in Gasochromic Pt/WO3 Thin Films Exposed to Hydrogen , 2017 .

[5]  Jae Kyung Lee,et al.  Hydrogen sensing properties and mechanism of NiO-Nb2O5 composite nanoparticle-based electrical gas sensors , 2017 .

[6]  Masanori Ando,et al.  Recent advances in optochemical sensors for the detection of H2, O2, O3, CO, CO2 and H2O in air , 2006 .

[7]  C. Hsu,et al.  Characterization of gasochromic vanadium oxides films by X-ray absorption spectroscopy , 2013 .

[8]  S. Phanichphant,et al.  Ultra-responsive hydrogen gas sensors based on PdO nanoparticle-decorated WO3 nanorods synthesized by precipitation and impregnation methods , 2016 .

[9]  M. Behbahani,et al.  Hydrogen sensing by wet-gasochromic coloring of PdCl2(aq)/WO3 and the role of hydrophilicity of tungsten oxide films , 2013 .

[10]  M. Ranjbar,et al.  Excimer laser treatment of TiO 2 /WO 3 thin films for self-cleaning gasochromic applications: Preparation and characterization , 2014 .

[11]  Wolfgang Graf,et al.  Mechanism of the gasochromic coloration of porous WO3 films , 2000 .

[12]  M. Yaacob,et al.  Optical H2 sensing properties of vertically aligned Pd/WO3 nanorods thin films deposited via glancing angle rf magnetron sputtering , 2013 .

[13]  Ramesh Chandra,et al.  A fast response/recovery of hydrophobic Pd/V2O5 thin films for hydrogen gas sensing , 2016 .

[14]  Sehee Lee,et al.  Color change of V2O5 thin films upon exposure to organic vapors , 2008 .

[15]  S. Mahdavi,et al.  The effect of operating temperature on gasochromic properties of amorphous and polycrystalline pulsed laser deposited WO3 films , 2012 .

[16]  U. Krašovec,et al.  Cubic WO3 stabilized by inclusion of Ti: Applicable in photochromic glazing , 2016 .

[17]  K. Shahzad,et al.  Removal of acetylsalicylate and methyl-theobromine from aqueous environment using nano-photocatalyst WO3-TiO2 @g-C3N4 composite. , 2019, Journal of hazardous materials.

[18]  Chih-Chieh Chan,et al.  Pulsed laser deposition of (WO3)1 − x(Nb2O5)x thin films: Characterization and gasochromic studies , 2011 .

[19]  A. I. Zad,et al.  H2S gasochromic effect of mixed ammonium salts of phosphomolybdate nanoparticles synthesized by microwave assisted technique , 2016 .

[20]  K. Nishio,et al.  Influence of oxygen gas concentration on hydrogen sensing of Pt/WO3 thin film prepared by sol-gel process , 2015 .

[21]  Eric Borguet,et al.  Palladium nanoparticle-based surface acoustic wave hydrogen sensor. , 2015, ACS applied materials & interfaces.

[22]  Chung-Chieh Chang,et al.  Hydrogen sensing characteristics of an electrodeposited WO3 thin film gasochromic sensor activated by Pt catalyst , 2007 .

[23]  Tadeusz Pustelny,et al.  An optical ammonia (NH3) gas sensing by means of Pd/CuPc interferometric nanostructures based on white light interferometry , 2013 .

[24]  P. Ngene,et al.  Seeing Hydrogen in Colors: Low‐Cost and Highly Sensitive Eye Readable Hydrogen Detectors , 2014 .

[25]  L. Boon-Brett,et al.  Reliability of commercially available hydrogen sensors for detection of hydrogen at critical concentrations: Part I – Testing facility and methodologies , 2008 .

[26]  B. Orel,et al.  IR Spectroscopic studies of charged–discharged crystalline WO3 films , 2001 .

[27]  Kazuki Yoshimura,et al.  Low-temperature chemical fabrication of Pt-WO3 gasochromic switchable films using UV irradiation , 2017 .

[28]  Heinz Schmitt,et al.  Effect of O2 partial pressure and thickness on the gasochromic properties of sputtered V2O5 films , 2005 .

[29]  Wojtek Wlodarski,et al.  Optical characterisation of nanostructured Au/WO3 thin films for sensing hydrogen at low concentrations , 2013 .

[30]  Zenghai Zhang,et al.  Tandem gasochromic-Pd-WO3/graphene/Si device for room-temperature high-performance optoelectronic hydrogen sensors , 2018 .

[31]  Jun Chen,et al.  Gasochromic effect and relative mechanism of WO3 nanowire films , 2007 .

[32]  M. Ranjbar,et al.  Plasmonic Au-MoO3 Colloidal Nanoparticles by Reduction of HAuCl4 by Blue MoOx Nanosheets and Observation of the Gasochromic Property , 2018, Plasmonics.

[33]  M. Wuttig,et al.  Gasochromic switching of tungsten oxide films: a correlation between film properties and coloration kinetics , 2002 .

[34]  S. Mahdavi,et al.  Pd2+ reduction and gasochromic properties of colloidal tungsten oxide nanoparticles synthesized by pulsed laser ablation , 2012 .

[35]  Chun-liu Zhao,et al.  Hydrogen sensor based on polymer-filled hollow core fiber with Pt-loaded WO3/SiO2 coating , 2017 .

[36]  Renata Reisfeld,et al.  Gasochromic Effect in Platinum-Doped Tungsten Trioxide Films Prepared by the Sol-Gel Method , 1998 .

[37]  Boris Orel,et al.  IR Spectroscopic Investigations of Gasochromic and Electrochromic Sol-Gel—Derived Peroxotungstic Acid/Ormosil Composite and Crystalline WO3 Films , 2002 .

[38]  Xiaogan Li,et al.  Hydrogen sensing of the mixed-potential-type MnWO4/YSZ/Pt sensor , 2015 .

[39]  S. Mahdavi,et al.  Palladium nanoparticle deposition onto the WO3 surface through hydrogen reduction of PdCl2: Characterization and gasochromic properties , 2011 .

[40]  H. Seo,et al.  Green deposition of Pd nanoparticles on WO3 for optical, electronic and gasochromic hydrogen sensing applications , 2015 .

[41]  Wolfgang Graf,et al.  Examination of the kinetics and performance of a catalytically switching (gasochromic) device , 1998 .

[42]  Y. Choa,et al.  Thermochemical hydrogen sensor based on Pt-coated nanofiber catalyst deposited on pyramidally textured thermoelectric film , 2017 .

[43]  Ningsheng Xu,et al.  Study of self-heating phenomenon and its resultant effect on ultrafast gasochromic coloration of Pt-WO3 nanowire films , 2012 .

[44]  Tzu-Ching Lin,et al.  WO3/TiO2 core–shell nanostructure for high performance energy-saving smart windows , 2015 .

[45]  H. Aboul‐Enein,et al.  Tungsten-based glasses for photochromic, electrochromic, gas sensors, and related applications: A review , 2018, Journal of Non-Crystalline Solids.

[46]  M. Apitz,et al.  Metallo-porphyrin zinc as gas sensitive material for colorimetric gas sensors on planar optical waveguides , 2012, Microsystem Technologies.

[47]  Kentaro Ito,et al.  Hydrogen detection based on coloration of anodic tungsten oxide film , 1992 .

[48]  G. Kolbasov,et al.  Gasochromic α,β–Ni(OH)2 films for the determination of CO and chlorine content , 2017 .

[49]  Chung-Chieh Chang,et al.  Preparation and characterization of gasochromic Pt/WO3 hydrogen sensor by using the Taguchi design method , 2010 .

[50]  Li Gong,et al.  Evidence of Localized Water Molecules and Their Role in the Gasochromic Effect of WO3 Nanowire Films , 2009 .

[51]  K. Bange,et al.  Colouration of tungsten oxide films: A model for optically active coatings , 1999 .

[52]  S. Mahdavi,et al.  Pulsed laser deposition of W–V–O composite films: Preparation, characterization and gasochromic studies , 2008 .

[53]  Tzu-Wen Huang,et al.  Pulsed laser deposition of (MoO3)1 − x(V2O5)x thin films: Preparation, characterization and gasochromic studies , 2010 .

[54]  G. Neri,et al.  Gasochromic response of nanocrystalline vanadium pentoxide films deposited from ethanol dispersions , 2010 .

[55]  Chung-Chieh Chang,et al.  Hydrogen incorporation in gasochromic coloration of sol–gel WO3 thin films , 2011 .

[56]  S. S. Kalanur,et al.  Eye-readable gasochromic and electrical detectability of hydrogenated Pd-TiO2 to gaseous fluorine species , 2018, Applied Surface Science.

[57]  S. Okazaki,et al.  Temperature dependence and degradation of gasochromic response behavior in hydrogen sensing with Pt/WO3 thin film , 2014 .

[58]  Jin Huang,et al.  Synthesis of monoclinic WO3 nanosphere hydrogen gasochromic film via a sol-gel approach using PS-b-PAA diblock copolymer as template , 2010 .

[59]  C. Chen,et al.  An ultra-fast response gasochromic device for hydrogen gas detection , 2013 .

[60]  Volker Wittwer,et al.  The gasochromic properties of sol–gel WO3 films with sputtered Pt catalyst , 2000 .

[61]  M. Wuttig,et al.  Gasochromic switching of reactively sputtered molybdenumoxide films : A correlation between film properties and deposition pressure , 2006 .

[62]  K. Nishio,et al.  Preparation of Pt/WO3-coated polydimethylsiloxane membrane for transparent/flexible hydrogen gas sensors , 2019, Materials Chemistry and Physics.

[63]  A. Mirzaei,et al.  α-Fe2O3 based nanomaterials as gas sensors , 2016, Journal of Materials Science: Materials in Electronics.

[64]  J. Coey,et al.  Flower-like nanostructures of WO3: Fabrication and characterization of their in-liquid gasochromic effect , 2016 .

[65]  H. Tavanai,et al.  Fabrication of tungsten oxide nanofibers via electrospinning for gasochromic hydrogen detection , 2018, Sensors and Actuators B: Chemical.

[66]  Jae-Hun Kim,et al.  Low power-consumption CO gas sensors based on Au-functionalized SnO2-ZnO core-shell nanowires , 2018, Sensors and Actuators B: Chemical.

[67]  S. Mahdavi,et al.  Pt and Pd as catalyst deposited by hydrogen reduction of metal salts on WO3 films for gasochromic application , 2013 .

[68]  M. Kosec,et al.  Gasochromic Behavior of Sol-Gel Derived Pd Doped Peroxopolytungstic Acid (W-PTA) Nano-Composite Films , 1999 .

[69]  N. Xu,et al.  Study of the catalyst poisoning and reactivation of Pt nanoparticles on the surface of WO3 nanowire in gasochromic coloration , 2012 .

[70]  H. Schmitt,et al.  Fast coloration in sputtered gasochromic tungsten oxide films , 2006 .

[71]  S. Yamamoto,et al.  Structural and gasochromic properties of epitaxial WO3 films prepared by pulsed laser deposition , 2008 .

[72]  D. Gogova,et al.  Comparative study of gasochromic and electrochromic effect in thermally evaporated tungsten oxide thin films , 2009 .

[73]  P. Woodward,et al.  The High-Temperature Phases of WO3 , 1999 .

[74]  Giovanni Neri,et al.  Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review , 2016 .

[75]  Ulrich Banach,et al.  Hydrogen Sensors - A review , 2011 .

[76]  Arvind Kumar,et al.  Fabrication of porous silicon filled Pd/SiC nanocauliflower thin films for high performance H2 gas sensor , 2018, Sensors and Actuators B: Chemical.

[77]  Zhigang Chen,et al.  Color-Changing Microfiber-Based Multifunctional Window Screen for Capture and Visualized Monitoring of NH3. , 2018, ACS applied materials & interfaces.

[78]  B. Liu,et al.  Improved room-temperature hydrogen sensing performance of directly formed Pd/WO3 nanocomposite , 2014 .

[79]  R. Wu,et al.  Preparation of palladium-doped mesoporous WO3 for hydrogen gas sensors , 2019, Journal of Alloys and Compounds.

[80]  S. S. Kalanur,et al.  Highly sensitive gasochromic H2 sensing by nano-columnar WO3-Pd films with surface moisture , 2017 .

[81]  H. Seo,et al.  2-D WO3 decorated with Pd for rapid gasochromic and electrical hydrogen sensing , 2017 .

[82]  Han Song,et al.  Optical fiber hydrogen sensor based on evaporated Pt/WO3 film , 2015 .

[83]  D. Kaczmarek,et al.  Investigations of reversible optical transmission in gasochromic (Ti-V-Ta)Ox thin film for gas sensing applications , 2014 .

[84]  Renata Reisfeld,et al.  Gasochromic effect of palladium doped peroxopolytungstic acid films prepared by the sol-gel route , 1998 .

[85]  Yi Tang,et al.  Transparent WO3/Ag/WO3 electrode for flexible organic solar cells , 2017 .

[86]  T. Shikama,et al.  Hydrogen behavior in gasochromic tungsten oxide films investigated by elastic recoil detection analysis , 2008 .

[87]  S. Mahdavi,et al.  Electroless plating of palladium on WO3 films for gasochromic applications , 2010 .

[88]  K. Nishio,et al.  Hydrogen gas-sensing properties of Pt/WO3 thin film in various measurement conditions , 2012, Ionics.

[89]  C. Liang,et al.  Construction of solid-state Z-scheme carbon-modified TiO 2 /WO 3 nanofibers with enhanced photocatalytic hydrogen production , 2016 .

[90]  R. Chandra,et al.  Highly sensitive and selective hydrogen gas sensor using sputtered grown Pd decorated MnO2 nanowalls , 2016 .

[91]  S. K. Deb Optical and photoelectric properties and colour centres in thin films of tungsten oxide , 1973 .

[92]  Guanggang Gao,et al.  Polyoxometalate-based gasochromic silica , 2008 .

[93]  T. Hakoda,et al.  Gasochromic property of dehydrogenation-catalyst loaded tungsten trioxide , 2013 .

[94]  C. E. Tracy,et al.  Raman spectroscopic studies of gasochromic a-WO3 thin films , 2001 .

[95]  M. Ranjbar,et al.  Gasochromic tungsten oxide films with PdCl2 solution as an aqueous Hydrogen catalyst , 2013 .

[96]  N. Han,et al.  Ordered mesoporous WO3/ZnO nanocomposites with isotype heterojunctions for sensitive detection of NO2 , 2019, Sensors and Actuators B: Chemical.

[97]  S. Yamamoto,et al.  Effects of composition and structure on gasochromic coloration of tungsten oxide films investigated with XRD and RBS , 2007 .

[98]  G. Neri,et al.  Microwave-assisted synthesis of metal oxide nanostructures for gas sensing application: A review , 2016 .