Fork Algebras in Algebra, Logic and Computer Science

Since the main themes at the Helena Rasiowa memorial were algebra, logic and computer science, we will present a survey of results on fork algebras from these points of view. In this paper we study fork algebras from the points of view of their algebraic and logical properties and applications. These results will prove to be essential, in a future work, for the definition of a wide-spectrum calculus for program construction.

[1]  R. Sikorski,et al.  The mathematics of metamathematics , 1963 .

[2]  Viktor Gyuris A Short Proof of Representability of Fork Algebras , 1995, Log. J. IGPL.

[3]  A. Tarski,et al.  A Formalization Of Set Theory Without Variables , 1987 .

[4]  A. Tarski,et al.  Boolean Algebras with Operators , 1952 .

[5]  Hajnal Andréka,et al.  Free algebras in discriminator varieties , 1991 .

[6]  Alfred Tarski,et al.  Distributive and Modular Laws in the Arithmetic of Relation Algebras , 1953 .

[7]  Ewa Orlowska,et al.  HANDLING INFORMATION LOGICS IN A GRAPHICAL PROOF EDITOR , 1995, Comput. Intell..

[8]  Fred B. Schneider,et al.  A Logical Approach to Discrete Math , 1993, Texts and Monographs in Computer Science.

[9]  Ildikó Sain,et al.  Applying Algebraic Logic to Logic , 1993, AMAST.

[10]  R. Lyndon THE REPRESENTATION OF RELATION ALGEBRAS, II , 1956 .

[11]  Leopold Löwenheim Über Möglichkeiten im Relativkalkül , 1915 .

[12]  David Gries Equational Logic as a Tool , 1995, AMAST.

[13]  Ewa Orlowska,et al.  Relational Semantics for Nonclassical Logics: Formulas are Relations , 1994 .

[14]  Gunther Schmidt,et al.  Relations and Graphs: Discrete Mathematics for Computer Scientists , 1993 .

[15]  Marcelo F. Frias,et al.  Equational Reasoning in Non--Classical Logics , 1998, J. Appl. Non Class. Logics.

[16]  Gunther Schmidt,et al.  On the Smooth Calculation of Relational Recursive Expressions out of First-Order Non-Constructive Specifications Involving Quantifiers , 1993, Formal Methods in Programming and Their Applications.

[17]  Stéphane Demri,et al.  Logical Analysis of Demonic Nondeterministic Programs , 1996, Theor. Comput. Sci..

[18]  P. Heath,et al.  On the Syllogism and Other Logical Writings. , 1966 .

[19]  Ewa Orlowska,et al.  Relational proof system for relevant logics , 1992, Journal of Symbolic Logic.

[20]  Gunther Schmidt,et al.  Relational Methods in Computer Science , 1999, Inf. Sci..

[21]  Marcelo F. Frias,et al.  A proof system for fork algebras and its applications to reasoning in logics based on intuitionism , 1995 .

[22]  Alfred Tarski,et al.  Relational selves as self-affirmational resources , 2008 .

[23]  A. Tarski,et al.  Cylindric Algebras. Part II , 1988 .

[24]  R. Lyndon THE REPRESENTATION OF RELATIONAL ALGEBRAS , 1950 .

[25]  Marcelo F. Frias,et al.  Representability and Program Construction within Fork Algebras , 1998, Log. J. IGPL.

[26]  Marcelo F. Frias,et al.  A Finite Axiomatization for Fork Algebras , 1997, Log. J. IGPL.

[27]  István Németi Strong Representability of Fork Algebras, a Set Theoretic Foundation , 1997, Log. J. IGPL.

[28]  Marcelo F. Frias,et al.  From Specifications to Programs: A Fork-Algebraic Approach to Bridge the Gap , 1996, MFCS.

[29]  Ewa Orlowska,et al.  Relational Proof Systems for Modal Logics , 1996 .