Advanced Structural Dynamics and Active Control of Structures

Preface List of Symbols Chapter 1 Introduction to Structures (examples, definition, and properties) 1.1 Examples 1.1.1 A Simple Structure 1.1.2 A 2D Truss 1.1.3 A 3D Truss 1.1.4 A Beam 1.1.5 The Deep Space Network Antenna 1.1.6 The International Space Station Structure 1.2 Definition 1.3 Properties Chapter 2 Standard Models (how to describe typical structures) 2.1 Models of a Linear System 2.1.1 State-Space Representation 2.1.2 Transfer Function 2.2 Second-Order Structural Models 2.2.1 Nodal Models 2.2.2 Modal Models 2.3 State-Space Structural Models 2.3.1 Nodal Models 2.3.2 Models in Modal Coordinates 2.3.3 Modal Models Chapter 3 Special Models (how to describe less-common structures) 3.1 Models with Rigid Body Modes 3.2 Models with Accelerometers 3.2.1 State-Space Representation 3.2.2 Second-Order Representation 3.2.3 Transfer Function 3.3 Models with Actuators 3.3.1 Model with Proof-Mass Actuators 3.3.2 Model with Inertial Actuators 3.4 Models with Small Non-Proportional Damping 3.5 Generalized Model 3.5.1 State-Space Representation 3.5.2 Transfer Function 3.6 Discrete-Time Models 3.6.1 State-Space Representation 3.6.2 Transfer Function Chapter 4 Controllability and Observability (how to excite and monitor a structure) 4.1 Definition and Properties 4.1.1 Continuous-Time Systems 4.1.2 Discrete-Time Systems 4.1.3. Relationship between Continuous- and Discrete-Time Grammians 4.2 Balanced Representation 4.3 Balanced Structures with Rigid Body Modes 4.4 Input and Output Gains 4.5 Controllability and Observability of a Structural Modal Model 4.5.1 Diagonally Dominant Grammians 4.5.2 Closed-Form Grammians 4.5.3 Approximately Balanced Structure in Modal Coordinates 4.6 Controllability and Observability of a Second-Order Modal Model 4.6.1 Grammians 4.6.2 Approximately Balanced Structure in Modal Coordinates 4.7 Three Ways to Compute Hankel Singular Values 4.8 &nb