On The Extraction of Training Imagery from Very Large Remote Sensing Datasets for Deep Convolutional Segmenatation Networks

In this work, we investigate strategies for training convolutional neural networks (CNNs) to perform recognition on remote sensing imagery. In particular we consider the particular problem of semantic segmentation in which the goal is to obtain a dense pixel-wise labeling of the input imagery. Remote sensing imagery is usually stored in the form of very large images, called “tiles”, which are too big to be segmented directly using most CNNs and their associated hardware. Therefore smaller sub-images, called “patches”, must be extracted from the available tiles. A popular strategy in the literature is to randomly sample patches from the tiles. However, in this work we demonstrate experimentally that extracting patches randomly from a uniform, non-overlapping spatial grid, leads to more accurate models. Our findings suggest the performance improvements are the result of reducing redundancy within the training dataset. We also find that sampling mini-batches of patches (for stochastic gradient descent) using constraints that maximizes the diversity of images within each batch leads to more accurate models. For example, in this work we constrained patches to come from varying tiles, or cities. These simple strategies contributed to our winning entry (in terms of overall performance) in the first year of the INRIA Building Labeling Challenge.

[1]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[2]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Pierre Alliez,et al.  Can semantic labeling methods generalize to any city? the inria aerial image labeling benchmark , 2017, 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[4]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[5]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[6]  Roberto Cipolla,et al.  SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[8]  Bastian Leibe,et al.  Full-Resolution Residual Networks for Semantic Segmentation in Street Scenes , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Uwe Stilla,et al.  SEMANTIC SEGMENTATION OF AERIAL IMAGES WITH AN ENSEMBLE OF CNNS , 2016 .