A new class of fully nonlinear and weakly dispersive Green-Naghdi models for efficient 2D simulations

We introduce a new class of two-dimensional fully nonlinear and weakly dispersive Green-Naghdi equations over varying topography. These new Green-Naghdi systems share the same order of precision as the standard one but have a mathematical structure which makes them much more suitable for the numerical resolution, in particular in the demanding case of two dimensional surfaces.For these new models, we develop a high order, well balanced, and robust numerical code relying on a hybrid finite volume and finite difference splitting approach. The hyperbolic part of the equations is handled with a high-order finite volume scheme allowing for breaking waves and dry areas. The dispersive part is treated with a finite difference approach. Higher order accuracy in space and time is achieved through WENO reconstruction methods and through an SSP-RK time stepping. Particular effort is made to ensure positivity of the water depth.Numerical validations are then performed, involving one and two dimensional cases and showing the ability of the resulting numerical model to handle waves propagation and transformation, wetting and drying; some simple treatments of wave breaking are also included. The resulting numerical code is particularly efficient from a computational point of view and very robust; it can therefore be used to handle complex two dimensional configurations.

[1]  Xiangxiong Zhang,et al.  On maximum-principle-satisfying high order schemes for scalar conservation laws , 2010, J. Comput. Phys..

[2]  Emmanuel Audusse,et al.  A Fast and Stable Well-Balanced Scheme with Hydrostatic Reconstruction for Shallow Water Flows , 2004, SIAM J. Sci. Comput..

[3]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[4]  Alain Dervieux,et al.  A low-diffusion MUSCL scheme for LES on unstructured grids , 2004 .

[5]  J. Kirby,et al.  BOUSSINESQ MODELING OF WAVE TRANSFORMATION , BREAKING , AND RUNUP . II : 2 D By , 1999 .

[6]  Philippe Bonneton,et al.  A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations. Part II : boundary conditions and validation , 2007 .

[7]  Maurizio Brocchini,et al.  Nonlinear Shallow Water Equation Modeling for Coastal Engineering , 2008 .

[8]  Kwok Fai Cheung,et al.  Depth‐integrated, non‐hydrostatic model for wave breaking and run‐up , 2009 .

[9]  Philippe Bonneton,et al.  Derivation of asymptotic two-dimensional time-dependent equations for surface water wave propagation , 2009 .

[10]  Fabien Marche,et al.  Discontinuous-GalerkinDiscretizationof aNewClass of Green-Naghdi Equations , 2015 .

[11]  Denys Dutykh,et al.  Finite volume schemes for dispersive wave propagation and runup , 2010, J. Comput. Phys..

[12]  P. A. Madsen,et al.  A new form of the Boussinesq equations with improved linear dispersion characteristics. Part 2. A slowly-varying bathymetry , 1992 .

[13]  Benedict D. Rogers,et al.  Mathematical balancing of flux gradient and source terms prior to using Roe's approximate Riemann solver , 2003 .

[14]  Maurizio Brocchini,et al.  A comparison of two different types of shoreline boundary conditions , 2002 .

[15]  Fabien Marche,et al.  Asymptotic preserving scheme for the shallow water equations with source terms on unstructured meshes , 2015, J. Comput. Phys..

[16]  Mario Ricchiuto,et al.  Stabilized residual distribution for shallow water simulations , 2009, J. Comput. Phys..

[17]  Rolf Deigaard,et al.  A Boussinesq model for waves breaking in shallow water , 1993 .

[18]  David Lannes,et al.  A Nash-Moser theorem for singular evolution equations. Application to the Serre and Green-Naghdi equations , 2007, math/0701681.

[19]  Yi Li A shallow‐water approximation to the full water wave problem , 2006 .

[20]  Philippe Bonneton,et al.  A fourth‐order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq‐type equations. Part I: model development and analysis , 2006 .

[21]  James M. Witting,et al.  A Unified Model for the Evolution of Nonlinear Water Waves , 1982 .

[22]  Harry B. Bingham,et al.  Velocity potential formulations of highly accurate Boussinesq-type models , 2009 .

[23]  Jurjen A. Battjes,et al.  Experimental investigation of wave propagation over a bar , 1993 .

[24]  Costas E. Synolakis,et al.  The runup of solitary waves , 1987, Journal of Fluid Mechanics.

[25]  Clive G. Mingham,et al.  A temporally second-order accurate Godunov-type scheme for solving the extended Boussinesq equations , 2009 .

[26]  Samer Israwi Derivation and analysis of a new 2D Green?Naghdi system , 2010 .

[27]  Gangfeng Ma,et al.  Shock-capturing non-hydrostatic model for fully dispersive surface wave processes , 2012 .

[28]  Philippe Bonneton,et al.  Wave-Breaking Model for Boussinesq-Type Equations Including Roller Effects in the Mass Conservation Equation , 2010 .

[29]  S. Gavrilyuk,et al.  A new model of roll waves: comparison with Brock’s experiments , 2012, Journal of Fluid Mechanics.

[30]  P. Bonneton,et al.  Nearshore Dynamics of Tsunami-like Undular Bores using a Fully Nonlinear Boussinesq Model , 2011 .

[31]  John W. Miles,et al.  Weakly dispersive nonlinear gravity waves , 1985, Journal of Fluid Mechanics.

[32]  J. Crease The Dynamics of the Upper Ocean , 1967 .

[33]  P. Bonneton,et al.  A new approach to handle wave breaking in fully non-linear Boussinesq models , 2012 .

[34]  P. A. Madsen,et al.  A new form of the Boussinesq equations with improved linear dispersion characteristics , 1991 .

[35]  M A U R ´ I C I,et al.  A Fully Nonlinear Boussinesq Model for Surface Waves. Part 2. Extension to O(kh) 4 , 2000 .

[36]  Franklin Liu,et al.  Modeling wave runup with depth-integrated equations , 2002 .

[37]  Spencer J. Sherwin,et al.  Spectral/hp discontinuous Galerkin methods for modelling 2D Boussinesq equations , 2006, J. Comput. Phys..

[38]  Fabien Marche,et al.  An efficient scheme on wet/dry transitions for shallow water equations with friction , 2011 .

[39]  Ting Chieh Lin,et al.  Tsunami-like solitary waves impinging and overtopping an impermeable seawall: Experiment and RANS modeling , 2010 .

[40]  Alf Tørum,et al.  Wave‐Induced Forces on Armor Unit on Berm Breakwaters , 1994 .

[41]  B. van't Hof,et al.  Modelling of wetting and drying of shallow water using artificial porosity , 2005 .

[42]  Per A. Madsen,et al.  Simulation of nonlinear wave run-up with a high-order Boussinesq model , 2008 .

[43]  Vincent Guinot,et al.  A second-order semi-implicit hybrid scheme for one-dimensional Boussinesq-type waves in rectangular channels , 2008 .

[44]  E. Barthélemy,et al.  Nonlinear Shallow Water Theories for Coastal Waves , 2004 .

[45]  D. Lannes,et al.  Numerical Simulation of Strongly Nonlinear and Dispersive Waves Using a Green–Naghdi Model , 2010, J. Sci. Comput..

[46]  Mario Ricchiuto,et al.  Upwind residual discretization of enhanced Boussinesq equations for wave propagation over complex bathymetries , 2013, J. Comput. Phys..

[47]  K. S. Erduran,et al.  Hybrid finite‐volume finite‐difference scheme for the solution of Boussinesq equations , 2005 .

[48]  S. Israwi,et al.  Large time existence for 1D Green-Naghdi equations , 2009, 0909.2232.

[49]  M. W. Dingemans,et al.  Comparison of computations with Boussinesq-like models and laboratory measurements , 1994 .

[50]  Maojun Li,et al.  High order well-balanced CDG-FE methods for shallow water waves by a Green-Naghdi model , 2014, J. Comput. Phys..

[51]  Modelling of periodic wave transformation in the inner surf zone , 2007 .

[52]  H. Schäffer,et al.  Boussinesq-type formulations for fully nonlinear and extremely dispersive water waves: derivation and analysis , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[53]  Further application of hybrid solution to another form of Boussinesq equations and comparisons , 2007 .

[54]  Xiangxiong Zhang,et al.  On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes , 2010, J. Comput. Phys..

[55]  Marcel Zijlema,et al.  Depth-induced wave breaking in a non-hydrostatic, near-shore wave model , 2013 .

[56]  H. Kalisch,et al.  Wave breaking in Boussinesq models for undular bores , 2011 .

[57]  Nikolaus A. Adams,et al.  Positivity-preserving method for high-order conservative schemes solving compressible Euler equations , 2013, J. Comput. Phys..

[58]  D. Lannes,et al.  A splitting approach for the fully nonlinear and weakly dispersive Green-Naghdi model , 2010, J. Comput. Phys..

[59]  J. Kirby,et al.  BOUSSINESQ MODELING OF WAVE TRANSFORMATION, BREAKING, AND RUNUP. II: 2D , 2000 .

[60]  K. Cheung,et al.  Boussinesq-type model for energetic breaking waves in fringing reef environments , 2012 .

[61]  G. Wei,et al.  Time-Dependent Numerical Code for Extended Boussinesq Equations , 1995 .

[62]  David Lannes,et al.  The Water Waves Problem: Mathematical Analysis and Asymptotics , 2013 .

[63]  O. Nwogu Alternative form of Boussinesq equations for nearshore wave propagation , 1993 .

[64]  P. M. Naghdi,et al.  A derivation of equations for wave propagation in water of variable depth , 1976, Journal of Fluid Mechanics.

[65]  Timothy A. Davis,et al.  An Unsymmetric-pattern Multifrontal Method for Sparse Lu Factorization , 1993 .

[66]  C. S. Gardner,et al.  Korteweg‐de Vries Equation and Generalizations. III. Derivation of the Korteweg‐de Vries Equation and Burgers Equation , 1969 .

[67]  John D. Fenton,et al.  A Fifth‐Order Stokes Theory for Steady Waves , 1985 .

[68]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[69]  F. Serre,et al.  CONTRIBUTION À L'ÉTUDE DES ÉCOULEMENTS PERMANENTS ET VARIABLES DANS LES CANAUX , 1953 .

[70]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[71]  I. Nikolos,et al.  An unstructured finite volume numerical scheme for extended 2D Boussinesq-type equations , 2012 .

[72]  Marco Petti,et al.  Finite volume scheme for the solution of 2D extended Boussinesq equations in the surf zone , 2010 .

[73]  Takashi Okamoto,et al.  The Relative Trough Froude Number for initiation of wave breaking: Theory, experiments and numerical model confirmation , 2006 .

[74]  Anders Lundbladh,et al.  Very large structures in plane turbulent Couette flow , 1996, Journal of Fluid Mechanics.

[75]  Yulong Xing,et al.  Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations , 2010 .

[76]  Q. Liang,et al.  Numerical resolution of well-balanced shallow water equations with complex source terms , 2009 .

[77]  Paul H. Taylor,et al.  From the paddle to the beach - A Boussinesq shallow water numerical wave tank based on Madsen and Sørensen's equations , 2012, J. Comput. Phys..

[78]  Fabien Marche,et al.  On the well-balanced numerical discretization of shallow water equations on unstructured meshes , 2013, J. Comput. Phys..

[79]  A. C. Radder,et al.  Verification of numerical wave propagation models for simple harmonic linear water waves , 1982 .

[80]  G. Wei,et al.  A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves , 1995, Journal of Fluid Mechanics.

[81]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[82]  Sergey L. Gavrilyuk,et al.  A numerical scheme for the Green-Naghdi model , 2010, J. Comput. Phys..

[83]  Stephan T. Grilli,et al.  A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation , 2012 .

[84]  Argiris I. Delis,et al.  Numerical treatment of wave breaking on unstructured finite volume approximations for extended Boussinesq-type equations , 2014, J. Comput. Phys..

[85]  David Lannes,et al.  Large time existence for 3D water-waves and asymptotics , 2007, math/0702015.

[86]  David Lannes,et al.  Fully nonlinear long-wave models in the presence of vorticity , 2014, Journal of Fluid Mechanics.

[87]  Chi-Wang Shu,et al.  A technique of treating negative weights in WENO schemes , 2000 .

[88]  Fabien Marche,et al.  A Positive Preserving High Order VFRoe Scheme for Shallow Water Equations: A Class of Relaxation Schemes , 2008, SIAM J. Sci. Comput..

[89]  Dominique P. Renouard,et al.  Numerical and experimental study of the transformation of a solitary wave over a shelf or isolated obstacle , 1987, Journal of Fluid Mechanics.

[90]  Pierre Fabrie,et al.  Evaluation of well‐balanced bore‐capturing schemes for 2D wetting and drying processes , 2007 .

[91]  S. Gavrilyuk,et al.  The classical hydraulic jump in a model of shear shallow-water flows , 2013, Journal of Fluid Mechanics.

[92]  Marco Petti,et al.  Hybrid finite volume – finite difference scheme for 2DH improved Boussinesq equations , 2009 .

[93]  Philippe Bonneton,et al.  Recent advances in Serre-Green Naghdi modelling for wave transformation, breaking and runup processes , 2011 .

[94]  Yong-Sik Cho,et al.  Runup of solitary waves on a circular Island , 1995, Journal of Fluid Mechanics.

[95]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[96]  Robert W. Whalin,et al.  The limit of applicability of linear wave refraction theory in a convergence zone , 1971 .

[97]  P. Milewski,et al.  Finite volume and pseudo-spectral schemes for the fully nonlinear 1D Serre equations , 2011, European Journal of Applied Mathematics.