Visual perceptual-based film-type patterned retarder three-dimensional image representation

Abstract. Film-type patterned retarder (FPR) three-dimensional (3D) displays differ from two-dimensional (2D) displays with respect to two distinct features: (1) vertical subsampling caused by a film circularly polarized on a display and (2) luminance loss caused by 3D glasses. To reveal the negative effects of these differences, we analyze the spectrum of an image on an FPR 3D display and investigate the contrast sensitivity of human vision for that image. Based on the analysis results, a preprocessing method is proposed for the aliasing problem caused by the vertical subsampling. In addition, because contrast sensitivity decreases with decreasing luminance, we propose sharpness compensation based on Barten’s contrast sensitivity function model. The proposed method performs more effectively than other methods in terms of 3D image representation.

[1]  Lina J. Karam,et al.  A No-Reference Image Blur Metric Based on the Cumulative Probability of Blur Detection (CPBD) , 2011, IEEE Transactions on Image Processing.

[2]  Johannes Burge,et al.  Optimal defocus estimation in individual natural images , 2011, Proceedings of the National Academy of Sciences.

[3]  Eunsung Lee,et al.  Spatially adaptive antialiasing for enhancement of mobile imaging system using combined wavelet-fourier transform , 2013, IEEE Transactions on Consumer Electronics.

[4]  Joachim Hornung Pupillenbewegungen nach einem Sprung der Reizlichtintensität , 2004, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[5]  Jitendra Malik,et al.  Recovering high dynamic range radiance maps from photographs , 1997, SIGGRAPH.

[6]  J Mellerio,et al.  Ocular refraction at low illuminations. , 1966, Vision research.

[7]  Damon M. Chandler,et al.  ${\bf S}_{3}$: A Spectral and Spatial Measure of Local Perceived Sharpness in Natural Images , 2012, IEEE Transactions on Image Processing.

[8]  Kyu-Ik Sohng,et al.  Visual sensitivity correlated tone reproduction for low dynamic range images in the compression field , 2014 .

[9]  John M. Booth,et al.  Design Handbook for Imagery Interpretation Equipment , 1975 .

[10]  M Alpern,et al.  Effect of photoexcitation of the two retinas on pupil size. , 1967, Journal of neurophysiology.

[11]  B. Julesz Foundations of Cyclopean Perception , 1971 .

[12]  J Hornung [Pupillary movements following a jump in the stimulus light intensity]. , 1967, Pflugers Archiv fur die gesamte Physiologie des Menschen und der Tiere.

[13]  N. Langlands,et al.  Experiments on binocular vision. , 1926 .

[14]  Y. Yeh,et al.  Limits of Fusion and Depth Judgment in Stereoscopic Color Displays , 1990, Human factors.

[15]  Derek H. Fender,et al.  Human Engineering in Stereoscopic Viewing Devices , 1993, Advances in Computer Vision and Machine Intelligence.

[16]  Prentice Reeves,et al.  Rate of pupillary dilation and contraction. , 1918 .

[17]  S. Westland,et al.  Model of luminance contrast‐sensitivity function for application to image assessment , 2006 .

[18]  Murat Kunt,et al.  Wavelet-based color image compression: exploiting the contrast sensitivity function , 2003, IEEE Trans. Image Process..

[19]  J W GEBHARD,et al.  Pupil size as determined by adapting luminance. , 1952, Journal of the Optical Society of America.

[20]  Zhou Wang,et al.  Image Sharpness Assessment Based on Local Phase Coherence , 2013, IEEE Transactions on Image Processing.

[21]  Kyu-Ik Sohng,et al.  Complex adaptation-based LDR image rendering for 3D image reconstruction , 2014 .