Modelling the effects of partially observed covariates on Poisson process intensity

We propose an estimating function for parameters in a model for Poisson process intensity when time- or space-varying covariates are observed for both the events of the process and at sample times or locations selected from a probability-based sampling design. We investigate the large-sample properties of the proposed estimator under increasing domain asymptotics, demonstrating that it is consistent and asymptotically normally distributed. We illustrate our approach using data from an ecological momentary assessment of smoking. Copyright 2007, Oxford University Press.

[1]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[2]  Noel A Cressie,et al.  Prediction of spatial cumulative distribution functions using subsampling , 1999 .

[3]  S. K. Srinivasan,et al.  Stochastic Point Processes , 1978 .

[4]  J. Russell A circumplex model of affect. , 1980 .

[5]  Immediate antecedents of cigarette smoking: An analysis from ecological momentary assessment. , 2002 .

[6]  Y. Ogata The asymptotic behaviour of maximum likelihood estimators for stationary point processes , 1978 .

[7]  Wolfgang Härdle,et al.  SOME THEORY ON M‐SMOOTHING OF TIME SERIES , 1986 .

[8]  J. Heikkinen,et al.  Modeling a Poisson forest in variable elevations: a nonparametric Bayesian approach. , 1999, Biometrics.

[9]  Clifford B. Cordy,et al.  An extension of the Horvitz—Thompson theorem to point sampling from a continuous universe , 1993 .

[10]  Martin Crowder,et al.  On Consistency and Inconsistency of Estimating Equations , 1986, Econometric Theory.

[11]  D. Ruppert,et al.  Measurement Error in Nonlinear Models , 1995 .

[12]  P. McCullagh,et al.  Generalized Linear Models, 2nd Edn. , 1990 .

[13]  John A. Nelder,et al.  Generalized linear models. 2nd ed. , 1993 .

[14]  Michael L. Stein,et al.  Interpolation of spatial data , 1999 .

[15]  T. Postelnicu,et al.  Foundations of inference in survey sampling , 1977 .

[16]  Daryl J. Daley,et al.  An Introduction to the Theory of Point Processes , 2013 .

[17]  N. Cressie,et al.  Asymptotic Properties of Estimators for the Parameters of Spatial Inhomogeneous Poisson Point Processes , 1994, Advances in Applied Probability.

[18]  Y. Kutoyants,et al.  Statistical Inference for Spatial Poisson Processes , 1998 .

[19]  Stephen L. Rathbun,et al.  Estimation of Poisson Intensity Using Partially Observed Concomitant Variables , 1996 .

[20]  Jens Ledet Jensen,et al.  Asymptotic Normality of Estimates in Spatial Point Processes , 1993 .

[21]  P. McCullagh,et al.  Generalized Linear Models , 1992 .

[22]  S. Shiffman,et al.  Ecological Momentary Assessment (Ema) in Behavioral Medicine , 1994 .

[23]  Ričardas Zitikis,et al.  Statistical properties of a kernel-type estimator of the intensity function of a cyclic Poisson process , 2001 .

[24]  S. Shiffman,et al.  First lapses to smoking: within-subjects analysis of real-time reports. , 1996, Journal of consulting and clinical psychology.

[25]  Stephen L. Rathbun,et al.  Asymptotic properties of the maximum likelihood estimator for spatio-temporal point processes , 1996 .

[26]  S. Mase,et al.  Uniform LAN condition of planar Gibbsian point processes and optimality of maximum likelihood estimators of soft-core potential functions , 1992 .