Odd and even Poisson brackets in dynamical systems

[1]  Y. Manin,et al.  A supersymmetric extension of the Kadomtsev-Petviashvili hierarchy , 1985 .

[2]  A. Chowdhury,et al.  On the complete solution of the Hirota-Satsuma system through the 'dressing' operator technique , 1984 .

[3]  B. Kupershmidt Supersymmetric fluid in a free one-dimensional motion , 1984 .

[4]  B. Kupershmidt,et al.  A super Korteweg-de Vries equation: An integrable system , 1984 .

[5]  Darryl D. Holm,et al.  Relativistic fluid dynamics as a Hamiltonian system , 1984 .

[6]  D. Leites Introduction to the Theory of Supermanifolds , 1980 .

[7]  Y. Nakano Hamiltonian Formalism for Systems Including Grassmann Numbers and Canonical Quantization by Feynman Path-Integral with Constraints , 1980 .

[8]  Y. Manin Algebraic aspects of nonlinear differential equations , 1979 .

[9]  Y. Manin,et al.  Equations of long waves with a free surface. II. Hamiltonian structure and higher equations , 1978 .

[10]  S. Deser,et al.  Hamiltonian Formulation of Supergravity , 1977 .

[11]  G. Senjanovic Hamiltonian Formulation and Quantization of the Spin 3/2 Field , 1977 .

[12]  L. Lusanna,et al.  Classical spinning particles inter-acting with external gravitational ?elds , 1977 .

[13]  F. Berezin,et al.  Particle spin dynamics as the grassmann variant of classical mechanics , 1977 .

[14]  L. Brink,et al.  A Lagrangian formulation of the classical and quantum dynamics of spinning particles , 1977 .

[15]  R. Casalbuoni On the quantization of systems with anticommuting variables , 1976 .

[16]  I. Bialynicki-Birula,et al.  Canonical formulation of relativistic hydrodynamics , 1973 .