Characterization of laser propagation through turbulent media by quantifiers based on the wavelet transform: Dynamic study

We analyze, within the wavelet theory framework, the wandering over a screen of the centroid of a laser beam after it has propagated through a time-changing laboratory-generated turbulence. Following a previous work (Fractals 12 (2004) 223) two quantifiers are used, the Hurst parameter, H, and the normalized total wavelet entropy. The temporal evolution of both quantifiers, obtained from the laser spot data stream, is studied and compared. This allows us to extract information on the stochastic process associated with the turbulence dynamics.

[1]  J. L. Véhel,et al.  On the identification of the pointwise Hölder exponent of the generalized multifractional Brownian motion , 2004 .

[2]  H. Stanley,et al.  Time-dependent Hurst exponent in financial time series , 2004 .

[3]  M. Unser,et al.  Interpolation Revisited , 2000, IEEE Trans. Medical Imaging.

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  V. Samar,et al.  Wavelet Analysis of Neuroelectric Waveforms: A Conceptual Tutorial , 1999, Brain and Language.

[6]  D. G. Péreza,et al.  Wavelet entropy and fractional Brownian motion time series , 2006 .

[7]  D. Jaggard,et al.  Fractal superlattices and their wavelet analyses , 1998 .

[8]  Lonnie H. Hudgins,et al.  Wavelet transforms and atmopsheric turbulence. , 1993, Physical review letters.

[9]  Stéphane Mallat,et al.  A Wavelet Tour of Signal Processing, 2nd Edition , 1999 .

[10]  Patrice Y. Simard,et al.  Estimation of the self-similarity parameter using the wavelet transform , 2004, Signal Process..

[11]  A. Consortini,et al.  Beam wandering of thin parallel beams through atmospheric turbulence , 1991 .

[12]  Jean-François Coeurjolly Inférence statistique pour les mouvements browniens fractionnaires et multifractionnaires. (Statistical inference for fractional and multifractional Brownian motions) , 2000 .

[13]  K. N. Helland,et al.  The ‘Hurst phenomenon’ in grid turbulence , 1978, Journal of Fluid Mechanics.

[14]  Charles Meneveau,et al.  The fractal facets of turbulence , 1986, Journal of Fluid Mechanics.

[15]  Héctor Rabal,et al.  Dynamic speckle processing using wavelets based entropy , 2005 .

[16]  C. Meneveau,et al.  The multifractal nature of turbulent energy dissipation , 1991, Journal of Fluid Mechanics.

[17]  E. Basar,et al.  Wavelet entropy: a new tool for analysis of short duration brain electrical signals , 2001, Journal of Neuroscience Methods.

[18]  Patrice Abry,et al.  Wavelets for the Analysis, Estimation, and Synthesis of Scaling Data , 2002 .

[19]  H. E. Hurst,et al.  Long-Term Storage Capacity of Reservoirs , 1951 .

[20]  G. Conforti,et al.  A Mixed Method for Measuring the Inner Scale of Atmospheric Turbulence , 1990 .

[21]  B. Mandelbrot Intermittent turbulence in self-similar cascades : divergence of high moments and dimension of the carrier , 2004 .

[22]  Alejandra Figliola,et al.  Time-frequency analysis of electroencephalogram series. III. Wavelet packets and information cost function , 1998 .

[23]  Jan Beran,et al.  Statistics for long-memory processes , 1994 .

[24]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[25]  Walter Willinger,et al.  Self-Similar Network Traffic and Performance Evaluation , 2000 .

[26]  B. Mandelbrot On the geometry of homogeneous turbulence, with stress on the fractal dimension of the iso-surfaces of scalars , 1975, Journal of Fluid Mechanics.

[27]  Osvaldo A. Rosso,et al.  Characterization of time dynamical evolution of electroencephalographic epileptic records , 2002 .

[28]  O. Rosso,et al.  CHARACTERIZATION OF LASER PROPAGATION THROUGH TURBULENT MEDIA BY QUANTIFIERS BASED ON THE WAVELET TRANSFORM , 2003, nlin/0303027.

[29]  Stefano Sello,et al.  Wavelet entropy as a measure of solar cycle complexity , 2000 .

[30]  D. Pérez Propagación de luz en medios turbulentos , 2002 .

[31]  M. Rapacioli,et al.  Analyzing blood cell concentration as a stochastic process , 2001, IEEE Engineering in Medicine and Biology Magazine.

[32]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[33]  D. Grech,et al.  Can one make any crash prediction in finance using the local Hurst exponent idea , 2003, cond-mat/0311627.

[34]  L. Zunino,et al.  Wavelet entropy of stochastic processes , 2007 .

[35]  Héctor Rabal,et al.  Characterizing Dynamic Speckle Time Series with the Hurst Coefficient Concept , 2004 .

[36]  A.H. Tewfik,et al.  Correlation structure of the discrete wavelet coefficients of fractional Brownian motion , 1992, IEEE Trans. Inf. Theory.

[37]  R. Peltier,et al.  Multifractional Brownian Motion : Definition and Preliminary Results , 1995 .

[38]  Patrice Abry,et al.  Wavelet Analysis of Long-Range-Dependent Traffic , 1998, IEEE Trans. Inf. Theory.

[39]  G. Frantziskonis,et al.  WAVELET-BASED MULTISCALING IN SELF-AFFINE RANDOM MEDIA , 2000 .

[40]  C. M. Arizmendi,et al.  WAVELET-BASED FRACTAL ANALYSIS OF ELECTRICAL POWER DEMAND , 2000 .

[41]  S. Sello,et al.  Wavelet entropy and the multi-peaked structure of solar cycle maximum , 2003 .

[42]  Scotti,et al.  Fractal dimension of velocity signals in high-Reynolds-number hydrodynamic turbulence. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[43]  Patrick Flandrin,et al.  On the spectrum of fractional Brownian motions , 1989, IEEE Trans. Inf. Theory.

[44]  Elias Masry,et al.  The wavelet transform of stochastic processes with stationary increments and its application to fractional Brownian motion , 1993, IEEE Trans. Inf. Theory.

[45]  Michael Unser,et al.  Splines: a perfect fit for signal and image processing , 1999, IEEE Signal Process. Mag..

[46]  B. M. Tabak,et al.  The Hurst exponent over time: testing the assertion that emerging markets are becoming more efficient , 2004 .

[47]  A. Aldroubi,et al.  Wavelets in Medicine and Biology , 1997 .

[48]  M. Unser,et al.  Interpolation revisited [medical images application] , 2000, IEEE Transactions on Medical Imaging.

[49]  B. Vidakovic,et al.  Estimating Global and Local Scaling Exponents in Turbulent Flows Using Wavelet Transformations , 1999 .

[50]  Patrick Flandrin,et al.  Wavelet analysis and synthesis of fractional Brownian motion , 1992, IEEE Trans. Inf. Theory.