Fuzzy Clustering - Basic Ideas and Overview

This chapter overviews basic formulations as well as recent studies in fuzzy clustering. A major part is devoted to the discussion of fuzzy c-means and their variations. Recent topics such as kernel-based fuzzy c-means and clustering with semi-supervision are mentioned. Moreover, fuzzy hierarchical clustering is overviewed and fundamental theorem is given.

[1]  Hidetomo Ichihashi,et al.  Fuzzy c-means clustering with regularization by K-L information , 2001, 10th IEEE International Conference on Fuzzy Systems. (Cat. No.01CH37297).

[2]  Donald Gustafson,et al.  Fuzzy clustering with a fuzzy covariance matrix , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[3]  Xia Li,et al.  Semi-supervised kernel-based fuzzy C-means with pairwise constraints , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[4]  J. Dunn Well-Separated Clusters and Optimal Fuzzy Partitions , 1974 .

[5]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[6]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[7]  Alexander Zien,et al.  Semi-Supervised Learning , 2006 .

[8]  James M. Keller,et al.  Fuzzy Models and Algorithms for Pattern Recognition and Image Processing , 1999 .

[9]  Peter J. Rousseeuw,et al.  Finding Groups in Data: An Introduction to Cluster Analysis , 1990 .

[10]  Sadaaki Miyamoto,et al.  Fuzzy Sets in Information Retrieval and Cluster Analysis , 1990, Theory and Decision Library.

[11]  Sadaaki Miyamoto,et al.  Algorithms for Fuzzy Clustering - Methods in c-Means Clustering with Applications , 2008, Studies in Fuzziness and Soft Computing.

[12]  Sadaaki Miyamoto,et al.  Fuzzy c-Means Clustering Using Kernel Functions in Support Vector Machines , 2003, J. Adv. Comput. Intell. Intell. Informatics.

[13]  James M. Keller,et al.  A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..

[14]  Robert C. Kohberger,et al.  Cluster Analysis (3rd ed.) , 1994 .

[15]  Sadaaki Miyamoto,et al.  Fuzzy c-means as a regularization and maximum entropy approach , 1997 .

[16]  J. C. Dunn,et al.  A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .

[17]  Rui-Ping Li,et al.  A maximum-entropy approach to fuzzy clustering , 1995, Proceedings of 1995 IEEE International Conference on Fuzzy Systems..

[18]  Lotfi A. Zadeh,et al.  Similarity relations and fuzzy orderings , 1971, Inf. Sci..

[19]  Enrique H. Ruspini,et al.  A New Approach to Clustering , 1969, Inf. Control..

[20]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[21]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[22]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[23]  Tomer Hertz,et al.  Computing Gaussian Mixture Models with EM Using Equivalence Constraints , 2003, NIPS.

[24]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[25]  Rajesh N. Davé,et al.  Robust clustering methods: a unified view , 1997, IEEE Trans. Fuzzy Syst..

[26]  Sadaaki Miyamoto,et al.  An Overview of Hierarchical and Non-hierarchical Algorithms of Clustering for Semi-supervised Classification , 2012, MDAI.

[27]  R.J. Hathaway,et al.  Switching regression models and fuzzy clustering , 1993, IEEE Trans. Fuzzy Syst..

[28]  L. Jain,et al.  Fuzzy sets and their application to clustering and training , 2000 .

[29]  Bernhard Schölkopf,et al.  Learning with kernels , 2001 .

[30]  Witold Pedrycz,et al.  A Semi-supervised Clutsering Algorithm for Data Exploration , 2003, IFSA.