Determination of Dynamic Fracture-Initiation Toughness Using a Novel Impact Bend Test Procedure
暂无分享,去创建一个
A novel impact bend test procedure is described for determining the dynamic fracture-initiation toughness, K[sub Id], at a loading rate (stress intensity factor rate), K[sub I], of the order of 10[sup 6] MPa [radical]m/s. A special arrangement of the split Hopkinson pressure bar is adopted to measure accurately dynamic loads applied to a fatigue-precracked bend specimen. The dynamic stress intensity factor history for the bend specimen is evaluated by means of a dynamic finite element technique. The onset of crack initiation is detected using a string gage attached on the side of the specimen near a crack tip. The value of K[sub Id] is determined from the critical dynamic stress intensity factor at crack initiation. A series of dynamic fracture tests is carried out on a 7075-T6 aluminum alloy, a Ti-6246 alloy and an AISI 4340 steel. The K[sub Id] values obtained for the three structural materials are compared with the corresponding values obtained under quasi-static loading conditions.