Dynamics of spontaneous transitions between global brain states

Phase patterns of human scalp alpha EEG activity show spontaneous transitions between different globally phase‐synchronized states. We studied the dynamical properties of these transitions using the method of symbolic dynamics. We found greater predictability (deterministicity) and heterogeneity in the dynamics than what was expected from corresponding surrogate series in which linear correlations are retained. A possible explanation of these observations within the framework of chaotic itinerancy is discussed. Hum Brain Mapp, 2007. © 2007 Wiley‐Liss, Inc.

[1]  Karl J. Friston The labile brain. II. Transients, complexity and selection. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[2]  Wolf Singer,et al.  Striving for coherence , 1999 .

[3]  T. Koenig,et al.  Brain electric microstates and momentary conscious mind states as building blocks of spontaneous thinking: I. Visual imagery and abstract thoughts. , 1998, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[4]  D Lehmann,et al.  EEG alpha map series: brain micro-states by space-oriented adaptive segmentation. , 1987, Electroencephalography and clinical neurophysiology.

[5]  C. Leeuwen,et al.  Scale-invariant fluctuations of the dynamical synchronization in human brain electrical activity , 2003, Neuroscience Letters.

[6]  Walter J. Freeman,et al.  Origin, structure, and role of background EEG activity. Part 4: Neural frame simulation , 2006, Clinical Neurophysiology.

[7]  F. Varela,et al.  Measuring phase synchrony in brain signals , 1999, Human brain mapping.

[8]  R. Thatcher,et al.  Cortico-cortical associations and EEG coherence: a two-compartmental model. , 1986, Electroencephalography and clinical neurophysiology.

[9]  P. Nunez,et al.  Spatial‐temporal structures of human alpha rhythms: Theory, microcurrent sources, multiscale measurements, and global binding of local networks , 2001, Human brain mapping.

[10]  Richard B Silberstein,et al.  Dynamic sculpting of brain functional connectivity and mental rotation aptitude. , 2006, Progress in brain research.

[11]  Karl J. Friston,et al.  The labile brain. III. Transients and spatio-temporal receptive fields. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[12]  Michael R. Anderberg,et al.  Cluster Analysis for Applications , 1973 .

[13]  M. Breakspear Nonlinear phase desynchronization in human electroencephalographic data , 2002, Human brain mapping.

[14]  W. Freeman,et al.  Fine temporal resolution of analytic phase reveals episodic synchronization by state transitions in gamma EEGs. , 2002, Journal of neurophysiology.

[15]  Bärbel Schack,et al.  How to Construct a Microstate-Based Alphabet for Evaluating Information Processing in Time , 2004, Int. J. Bifurc. Chaos.

[16]  Michael Breakspear,et al.  A Novel Method for the Topographic Analysis of Neural Activity Reveals Formation and Dissolution of ‘Dynamic Cell Assemblies’ , 2004, Journal of Computational Neuroscience.

[17]  Kunihiko Kaneko,et al.  Complex Systems: Chaos and Beyond , 2001 .

[18]  F. Varela,et al.  Perception's shadow: long-distance synchronization of human brain activity , 1999, Nature.

[19]  Jens Timmer,et al.  Power of surrogate data testing with respect to nonstationarity , 1998, chao-dyn/9807039.

[20]  Jürgen Kurths,et al.  Synchronization: Phase locking and frequency entrainment , 2001 .

[21]  W. Pritchard,et al.  Dimensional analysis of resting human EEG. II: Surrogate-data testing indicates nonlinearity but not low-dimensional chaos. , 1995, Psychophysiology.

[22]  Natasha M. Maurits,et al.  Correlating the alpha rhythm to BOLD using simultaneous EEG/fMRI: Inter-subject variability , 2006, NeuroImage.

[23]  C. Neuper,et al.  Event-related dynamics of brain oscillations , 2006 .

[24]  John R. Terry,et al.  Detection and description of non-linear interdependence in normal multichannel human EEG data , 2002, Clinical Neurophysiology.

[25]  Alexander A. Fingelkurts,et al.  Nonstationary nature of the brain activity as revealed by EEG/MEG: Methodological, practical and conceptual challenges , 2005, Signal Process..

[26]  Cees van Leeuwen,et al.  Spatial and temporal structure of phase synchronization of spontaneous alpha EEG activity , 2004, Biological Cybernetics.

[27]  A Daffertshofer,et al.  Detection of mutual phase synchronization in multivariate signals and application to phase ensembles and chaotic data. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Milan Palus,et al.  Nonlinearity in normal human EEG: cycles, temporal asymmetry, nonstationarity and randomness, not chaos , 1996, Biological Cybernetics.

[29]  Cees van Leeuwen,et al.  Phase Synchronization Analysis of EEG during Attentional Blink , 2005, Journal of Cognitive Neuroscience.

[30]  John R. Terry,et al.  Topographic Organization of Nonlinear Interdependence in Multichannel Human EEG , 2002, NeuroImage.

[31]  R. Silberstein,et al.  Steady-state visual evoked potentials and travelling waves , 2000, Clinical Neurophysiology.

[32]  I. Tsuda Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems. , 2001, The Behavioral and brain sciences.

[33]  Walter J. Freeman,et al.  Origin, structure, and role of background EEG activity. Part 1. Analytic amplitude , 2004, Clinical Neurophysiology.

[34]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[35]  Karl J. Friston The labile brain. I. Neuronal transients and nonlinear coupling. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[36]  J. Martinerie,et al.  The brainweb: Phase synchronization and large-scale integration , 2001, Nature Reviews Neuroscience.

[37]  Kunihiko Kaneko,et al.  Complex Systems: Chaos and Beyond: A Constructive Approach with Applications in Life Sciences , 2000 .

[38]  A. von Stein,et al.  Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[39]  C. Stam,et al.  Nonlinear synchronization in EEG and whole‐head MEG recordings of healthy subjects , 2003, Human brain mapping.

[40]  C. J. Stam,et al.  Investigation of nonlinear structure in multichannel EEG , 1995 .

[41]  W. Freeman,et al.  Aperiodic phase re‐setting in scalp EEG of beta–gamma oscillations by state transitions at alpha–theta rates , 2003, Human brain mapping.

[42]  Theiler,et al.  Generating surrogate data for time series with several simultaneously measured variables. , 1994, Physical review letters.

[43]  W. Freeman Origin, structure, and role of background EEG activity. Part 2. Analytic phase , 2004, Clinical Neurophysiology.