Effect of chalcogen substitution on aqueous dispersions of poly(3,4-ethylenedioxythiophene)s:poly(4-styrenesulfonate) and their flexible conducting films

[1]  M. Al-jumaili,et al.  Efficient synthesis of 2,5-dicarbonyl derivatives of 3,4-ethylenedithiothiophene (EDTT) via addition-elimination reaction , 2017 .

[2]  Lidong Chen,et al.  Research progress on conducting polymer based supercapacitor electrode materials , 2017 .

[3]  Jong-Man Kim,et al.  Polymerizable Supramolecular Approach to Highly Conductive PEDOT:PSS Patterns. , 2017, ACS applied materials & interfaces.

[4]  Zhigang Zang,et al.  Conductivity Enhancement of PEDOT:PSS via Addition of Chloroplatinic Acid and Its Mechanism , 2017 .

[5]  Wei Chen,et al.  Real-time detection of Cu(II) with PEDOT:PSS based organic electrochemical transistors , 2017, Science China Chemistry.

[6]  L. Lan,et al.  Polystyrenesulfonate Dispersed Dopamine with Unexpected Stable Semiquinone Radical and Electrochemical Behavior: A Potential Alternative to PEDOT:PSS , 2017 .

[7]  Kaiwen Lin,et al.  Capacitive performance of electrodeposited PEDOS and a comparative study with PEDOT , 2016 .

[8]  A. H. El-Sayed,et al.  Solvents effects on the hole transport layer in organic solar cells performance , 2016 .

[9]  Jingkun Xu,et al.  Poly(thieno[3,4–b]–1,4–oxathiane): Effect of solvent on the chemical synthesis and capacitance comparison in different electrolytes , 2015 .

[10]  Baoyang Lu,et al.  Poly(thieno[3,4‐b]‐1,4‐oxathiane) and poly(3,4‐ethylenedioxythiophene‐co‐thieno[3,4‐b]‐1,4‐oxathiane)/poly(styrene sulfonic sodium): Preparation, characterization, and optoelectronic performance , 2015 .

[11]  Jingkun Xu,et al.  Effective Approaches to Improve the Electrical Conductivity of PEDOT:PSS: A Review , 2015 .

[12]  W. Xu,et al.  Organic Thermoelectric Materials: Emerging Green Energy Materials Converting Heat to Electricity Directly and Efficiently , 2014, Advanced materials.

[13]  Jianyong Ouyang,et al.  "Secondary doping" methods to significantly enhance the conductivity of PEDOT: PSS for its application as transparent electrode of optoelectronic devices , 2013, Displays.

[14]  Baoyang Lu,et al.  Systematic study on chemical oxidative and solid‐state polymerization of poly(3,4‐ethylenedithiathiophene) , 2012 .

[15]  M. Bouvet,et al.  Self-assembled aggregates of amphiphilic perylene diimide-based semiconductor molecules: effect of morphology on conductivity. , 2012, Journal of colloid and interface science.

[16]  M. Bendikov,et al.  Tuning of electronic properties and rigidity in PEDOT analogs , 2011 .

[17]  L. Shimon,et al.  Controlling rigidity and planarity in conjugated polymers: poly(3,4-ethylenedithioselenophene). , 2009, Angewandte Chemie.

[18]  Fu Guang-sheng,et al.  Three-Photon Resonant Nondegenerate Six-Wave Mixing in a Dressed Atomic System , 2008 .

[19]  Baoyang Lu,et al.  Thermoelectric Performance of Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate) , 2008 .

[20]  A. Rubino,et al.  Poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) ratio: Structural, physical and hole injection properties in organic light emitting diodes , 2008 .

[21]  S. Coles,et al.  The first direct experimental comparison between the hugely contrasting properties of PEDOT and the all-sulfur analogue PEDTT by analogy with well-defined EDTT–EDOT copolymers , 2005 .

[22]  Jae Hoon Jung,et al.  Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents , 2002 .