Surface imaging using optically controlled microrods

We present an imaging technique using an optically trapped silica microrod probe controlled using holographic optical tweezers. The probe is raster scanned over a surface, allowing an image to be recorded in a manner analogous to scanning probe microscopy (SPM), with closed loop feedback control provided by high-speed CMOS camera image tracking. We demonstrate a proof of principle of this technique by imaging the surface of an oil droplet. We estimate the normal force exerted on the sample during imaging to be 1 pN. The resolution is limited by the diameter of the microrod tip, thermal motion of the probe and the tracking accuracy. As our technique is not diraction limited, there is scope for signicant improvement by reducing the tip diameter, and position clamping to reduce unwanted thermal motion.

[1]  Peter John Rodrigo,et al.  Real-time three-dimensional optical micromanipulation of multiple particles and living cells. , 2004, Optics letters.

[2]  Simon Hanna,et al.  Optical trapping of dielectric ellipsoids , 2010, NanoScience + Engineering.

[3]  Job Ubbink,et al.  Imaging of lactic acid bacteria with AFM--elasticity and adhesion maps and their relationship to biological and structural data. , 2003, Ultramicroscopy.

[4]  D B Phillips,et al.  Download details: IP Address: 137.222.59.47 , 2011 .

[5]  Johannes Courtial,et al.  Interactive approach to optical tweezers control. , 2006, Applied optics.

[6]  W. Webb,et al.  Scanning-force microscope based on an optical trap. , 1993, Optics letters.

[7]  Caner Durucan,et al.  Preparation and microstructure of sol-gel derived silver-doped silica , 2007 .

[8]  Stéphane Régnier,et al.  Touching the microworld with force-feedback optical tweezers. , 2009, Optics express.

[9]  M J Padgett,et al.  Hands-on with optical tweezers: a multitouch interface for holographic optical trapping. , 2009, Optics express.

[10]  Anna Linnenberger,et al.  Increasing Trap Stiffness with Position Clamping in Holographic Optical Tweezers , 2022 .

[11]  Simon Hanna,et al.  Holographic optical trapping of microrods and nanowires. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[12]  Peter C. Seitz,et al.  Interferometric tracking of optically trapped probes behind structured surfaces: A phase correction method. , 2006, Applied optics.

[13]  M J Padgett,et al.  Calibration of optically trapped nanotools , 2010, Nanotechnology.

[14]  E. Stelzer,et al.  Trapping and tracking a local probe with a photonic force microscope , 2004 .

[15]  Johannes Courtial,et al.  Holographic assembly workstation for optical manipulation , 2008 .

[16]  Simon Hanna,et al.  Non-conservative effects in optically trapped, low symmetry particles , 2010, NanoScience + Engineering.

[17]  Peter John Rodrigo,et al.  GPC-based optical micromanipulation in 3D real-time using a single spatial light modulator. , 2006, Optics express.

[18]  Simon Hanna,et al.  Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking , 2011 .

[19]  Halina Rubinsztein-Dunlop,et al.  Orientation of optically trapped nonspherical birefringent particles. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  D. Grier A revolution in optical manipulation , 2003, Nature.

[21]  P. G. Gucciardi,et al.  Femtonewton force sensing with optically trapped nanotubes. , 2008, Nano letters.

[22]  Peter Bøggild,et al.  Actuation of microfabricated tools using multiple GPC-based counterpropagating-beam traps. , 2005, Optics express.

[23]  J. Rao,et al.  Nanomechanical analysis of cells from cancer patients. , 2007, Nature nanotechnology.

[24]  Peter J. Pauzauskie,et al.  Tunable nanowire nonlinear optical probe , 2007, Nature.

[25]  H. Rubinsztein-Dunlop,et al.  Three-dimensional imaging with optical tweezers. , 1999, Applied optics.

[26]  E. Stelzer,et al.  Photonic force microscope based on optical tweezers and two-photon excitation for biological applications. , 1997, Journal of structural biology.

[27]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[28]  Masayuki Abe,et al.  Defects and their charge imaging on semiconductor surfaces by noncontact atomic force microscopy and spectroscopy , 2000 .

[29]  Meyer,et al.  Velocity dependence of atomic friction , 2000, Physical review letters.

[30]  Walter Häberle,et al.  Force microscopy on living cells , 1991 .

[31]  Simon Hanna,et al.  Thermal motion of a holographically trapped SPM-like probe , 2009, Nanotechnology.

[32]  Graham M. Gibson,et al.  Assembly and force measurement with SPM-like probes in holographic optical tweezers , 2009 .

[33]  Johannes Courtial,et al.  3D manipulation of particles into crystal structures using holographic optical tweezers. , 2004, Optics express.

[34]  Simon Hanna,et al.  Optical trapping of microrods: variation with size and refractive index. , 2011, Journal of the Optical Society of America. A, Optics, image science, and vision.