Moment Problems and Semidefinite Optimization

Problems involving moments of random variables arise naturally in many areas of mathematics, economics, and operations research. Let us give some examples that motivate the present paper.

[1]  L. Shapley,et al.  Geometry of Moment Spaces , 1953 .

[2]  N. Akhiezer,et al.  The Classical Moment Problem. , 1968 .

[3]  W. R. Buckland,et al.  Distributions in Statistics: Continuous Multivariate Distributions , 1973 .

[4]  S. Ross,et al.  The valuation of options for alternative stochastic processes , 1976 .

[5]  David M. Kreps,et al.  Martingales and arbitrage in multiperiod securities markets , 1979 .

[6]  N. Lind,et al.  A Linear Programming Formulation of the Problem of Moments , 1979 .

[7]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[8]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[9]  J. Kemperman On the Role of Duality in the Theory of Moments , 1983 .

[10]  Katta G. Murty,et al.  Some NP-complete problems in quadratic and nonlinear programming , 1987, Math. Program..

[11]  Alexander Schrijver,et al.  Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..

[12]  John N. Tsitsiklis,et al.  Optimization of multiclass queuing networks: polyhedral and nonlinear characterizations of achievable performance , 1994 .

[13]  S. Sushanth Kumar,et al.  Performance bounds for queueing networks and scheduling policies , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[14]  John N. Tsitsiklis,et al.  The complexity of optimal queueing network control , 1994, Proceedings of IEEE 9th Annual Conference on Structure in Complexity Theory.

[15]  Dimitris Bertsimas,et al.  The achievable region method in the optimal control of queueing systems; formulations, bounds and policies , 1995, Queueing Syst. Theory Appl..

[16]  James E. Smith,et al.  Generalized Chebychev Inequalities: Theory and Applications in Decision Analysis , 1995, Oper. Res..

[17]  Dimitris Bertsimas,et al.  Conservation Laws, Extended Polymatroids and Multiarmed Bandit Problems; A Polyhedral Approach to Indexable Systems , 1996, Math. Oper. Res..

[18]  Satissed Now Consider Improved Approximation Algorithms for Maximum Cut and Satissability Problems Using Semideenite Programming , 1997 .

[19]  Y. Ye,et al.  Semidefinite Relaxations, Multivariate Normal Distributions, and Order Statistics , 1998 .

[20]  D. Bertsimas,et al.  A New Algorithm for State-Constrained Separated Continuous Linear Programs , 1999 .

[21]  Dimitris Bertsimas,et al.  Optimization of Multiclass Queueing Networks with Changeover Times Via the Achievable Region Approach: Part I, the Single-Station Case , 1999 .

[22]  Ioana Popescu,et al.  On the Relation Between Option and Stock Prices: A Convex Optimization Approach , 2002, Oper. Res..