An approaching-theoretical-capacity anode material for aqueous battery: Hollow hexagonal prism Bi2O3 assembled by nanoparticles

[1]  Shuhong Yu,et al.  Ultrastable PtCo/Co3O4-SiO2 Nanocomposite with Active Lattice Oxygen for Superior Catalytic Activity toward CO Oxidation. , 2019, Inorganic chemistry.

[2]  Danielle M. Butts,et al.  Achieving high energy density and high power density with pseudocapacitive materials , 2019, Nature Reviews Materials.

[3]  Zifeng Wang,et al.  Advanced rechargeable zinc-based batteries: Recent progress and future perspectives , 2019, Nano Energy.

[4]  Chunfeng Ma,et al.  Anti-biofouling double-layered unidirectional scaffold for long-term solar-driven water evaporation , 2019, Journal of Materials Chemistry A.

[5]  Zhijie Wang,et al.  Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes , 2019, Energy Storage Materials.

[6]  Allen Pei,et al.  Amidoxime-Functionalized Macroporous Carbon Self-Refreshed Electrode Materials for Rapid and High-Capacity Removal of Heavy Metal from Water , 2019, ACS central science.

[7]  Chang Yu,et al.  Strategies and insights towards the intrinsic capacitive properties of MnO2 for supercapacitors: Challenges and perspectives , 2019, Nano Energy.

[8]  R. Mane,et al.  Ultra-rapid chemical synthesis of mesoporous Bi2O3 micro-sponge-balls for supercapattery applications , 2019, Electrochimica Acta.

[9]  Meng Huang,et al.  Recent Advances in Rational Electrode Designs for High‐Performance Alkaline Rechargeable Batteries , 2019, Advanced Functional Materials.

[10]  R. Mane,et al.  Sulphur Source-Inspired Self-Grown 3D Ni xS y Nanostructures and Their Electrochemical Supercapacitors. , 2019, ACS applied materials & interfaces.

[11]  Yongyao Xia,et al.  Recent Progress of Rechargeable Batteries Using Mild Aqueous Electrolytes , 2018, Small Methods.

[12]  Juan-Yu Yang,et al.  Surface‐Confined Fabrication of Ultrathin Nickel Cobalt‐Layered Double Hydroxide Nanosheets for High‐Performance Supercapacitors , 2018, Advanced Functional Materials.

[13]  Jiang Zhou,et al.  Recent Advances in Aqueous Zinc-Ion Batteries , 2018, ACS Energy Letters.

[14]  X. Lou,et al.  Hollow Structures Based on Prussian Blue and Its Analogs for Electrochemical Energy Storage and Conversion , 2018, Advanced materials.

[15]  Yingjie Mei,et al.  Bimetallic-MOF Derived Accordion-like Ternary Composite for High-Performance Supercapacitors. , 2018, Inorganic chemistry.

[16]  Huaiguo Xue,et al.  FeOx‐Based Materials for Electrochemical Energy Storage , 2018, Advanced science.

[17]  H. Fan,et al.  Novel ultrathin Bi 2 O 3 nanowires for supercapacitor electrode materials with high performance , 2018 .

[18]  Qingsheng Wu,et al.  Synthesis of sponge‐like Bi2O3 via a soft/hard‐combined biomembrane support system for supercapacitor application , 2018 .

[19]  R. Mane,et al.  Polycrystalline and Mesoporous 3-D Bi2O3 Nanostructured Negatrodes for High-Energy and Power-Asymmetric Supercapacitors: Superfast Room-Temperature Direct Wet Chemical Growth. , 2018, ACS applied materials & interfaces.

[20]  Ali Eftekhari,et al.  Energy efficiency: a critically important but neglected factor in battery research , 2017 .

[21]  F. Kang,et al.  Cation exchange formation of prussian blue analogue submicroboxes for high-performance Na-ion hybrid supercapacitors , 2017 .

[22]  Lina Ma,et al.  Oxygen‐Deficient Bismuth Oxide/Graphene of Ultrahigh Capacitance as Advanced Flexible Anode for Asymmetric Supercapacitors , 2017 .

[23]  Joseph F. Parker,et al.  Rechargeable nickel–3D zinc batteries: An energy-dense, safer alternative to lithium-ion , 2017, Science.

[24]  Jin Zhou,et al.  Enhanced supercapacitor performance based on 3D porous graphene with MoO_2 nanoparticles , 2017 .

[25]  Shinill Kang,et al.  Hierarchical MnCo-layered double hydroxides@Ni(OH)2 core–shell heterostructures as advanced electrodes for supercapacitors , 2017 .

[26]  Y. Tong,et al.  Iron‐Based Supercapacitor Electrodes: Advances and Challenges , 2016 .

[27]  Zhiguo Zhang,et al.  A bismuth oxide nanosheet-coated electrospun carbon nanofiber film: a free-standing negative electrode for flexible asymmetric supercapacitors , 2016 .

[28]  B. Yin,et al.  In Situ Growth of Free-Standing All Metal Oxide Asymmetric Supercapacitor. , 2016, ACS applied materials & interfaces.

[29]  Nannan Zhang,et al.  Micro-cable structured textile for simultaneously harvesting solar and mechanical energy , 2016, Nature Energy.

[30]  Wenhua Zuo,et al.  Bismuth oxide: a versatile high-capacity electrode material for rechargeable aqueous metal-ion batteries , 2016 .

[31]  X. Lou,et al.  Formation of Prussian‐Blue‐Analog Nanocages via a Direct Etching Method and their Conversion into Ni–Co‐Mixed Oxide for Enhanced Oxygen Evolution , 2016, Advanced materials.

[32]  Qingsheng Wu,et al.  Biomimetic and Bioinspired Synthesis of Nanomaterials/Nanostructures , 2016, Advanced materials.

[33]  R. Selvan,et al.  Microwave assisted reflux synthesis of NiCo2O4/NiO composite: Fabrication of high performance asymmetric supercapacitor with Fe2O3 , 2016 .

[34]  B. Tang,et al.  Facile synthesis of rod-like Bi2O3 nanoparticles as an electrode material for pseudocapacitors , 2016 .

[35]  Qingsheng Wu,et al.  A High‐Performance Supercapacitor with Well‐Dispersed Bi2O3 Nanospheres and Active‐Carbon Electrodes , 2015 .

[36]  Y. Tong,et al.  Investigation of hematite nanorod–nanoflake morphological transformation and the application of ultrathin nanoflakes for electrochemical devices , 2015 .

[37]  Huiling Yang,et al.  Flexible Asymmetric Micro‐Supercapacitors Based on Bi2O3 and MnO2 Nanoflowers: Larger Areal Mass Promises Higher Energy Density , 2015 .

[38]  Dingshan Yu,et al.  Ternary Hybrids of Amorphous Nickel Hydroxide–Carbon Nanotube‐Conducting Polymer for Supercapacitors with High Energy Density, Excellent Rate Capability, and Long Cycle Life , 2015 .

[39]  S. Dou,et al.  Large-scale synthesis of coaxial carbon nanotube/Ni(OH)2 composites for asymmetric supercapacitor application , 2015 .

[40]  Jeffrey W. Long,et al.  To Be or Not To Be Pseudocapacitive , 2015 .

[41]  W. Qian,et al.  Bi2O3 with activated carbon composite as a supercapacitor electrode , 2014 .

[42]  Jihyun Hong,et al.  Aqueous rechargeable Li and Na ion batteries. , 2014, Chemical reviews.

[43]  Junwei Lang,et al.  A hybrid supercapacitor based on flower-like Co(OH)2 and urchin-like VN electrode materials , 2014 .

[44]  Zhanhu Guo,et al.  One-step preparation of single-crystalline Fe2O3 particles/graphene composite hydrogels as high performance anode materials for supercapacitors , 2014 .

[45]  W. Shi,et al.  Hydrogenated CoOx nanowire@Ni(OH)2 nanosheet core-shell nanostructures for high-performance asymmetric supercapacitors. , 2014, Nanoscale.

[46]  B. Dunn,et al.  Pseudocapacitive oxide materials for high-rate electrochemical energy storage , 2014 .

[47]  B. Dunn,et al.  Where Do Batteries End and Supercapacitors Begin? , 2014, Science.

[48]  S. Jun,et al.  Enhanced supercapacitive performance of chemically grown cobalt-nickel hydroxides on three-dimensional graphene foam electrodes. , 2014, ACS applied materials & interfaces.

[49]  Sainan Yang,et al.  Asymmetric supercapacitors based on β-Ni(OH)2 nanosheets and activated carbon with high energy density , 2014 .

[50]  Yexiang Tong,et al.  Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials , 2013, Nature Communications.

[51]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[52]  Hao Gong,et al.  A High Energy Density Asymmetric Supercapacitor from Nano‐architectured Ni(OH)2/Carbon Nanotube Electrodes , 2012 .

[53]  Lei Zhang,et al.  A review of electrode materials for electrochemical supercapacitors. , 2012, Chemical Society reviews.

[54]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[55]  H. Dai,et al.  Advanced asymmetrical supercapacitors based on graphene hybrid materials , 2011, 1104.3379.

[56]  Weifeng Wei,et al.  Manganese oxide-based materials as electrochemical supercapacitor electrodes. , 2011, Chemical Society reviews.

[57]  Peihua Huang,et al.  Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. , 2010, Nature nanotechnology.

[58]  Y. Tong,et al.  Synthesis of hierarchical rippled Bi(2)O(3) nanobelts for supercapacitor applications. , 2010, Chemical communications.

[59]  Yi Wang,et al.  Bi2O3 deposited on highly ordered mesoporous carbon for supercapacitors , 2009 .

[60]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[61]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[62]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.