Satellite Remote Sensing of the Greenland Ice Sheet Ablation Zone: A Review

The Greenland Ice Sheet is now the largest land ice contributor to global sea level rise, largely driven by increased surface meltwater runoff from the ablation zone, i.e. areas of the ice sheet where annual mass losses exceed gains. This small but critically important area of the ice sheet has expanded in size by ~50% since the early 1960s, and satellite remote sensing is a powerful tool for monitoring the physical processes that influence its surface mass balance. This review synthesizes key remote sensing methods and scientific findings from satellite remote sensing of the Greenland Ice Sheet ablation zone, covering progress in 1) radar altimetry, 2) laser (lidar) altimetry, 3) gravimetry, 4) multispectral optical imagery and, 5) microwave and thermal imagery. Physical characteristics and quantities examined include surface elevation change, gravimetric mass balance, reflectance, albedo, and mapping of surface melt extent and glaciological facies and zones. The review concludes that future progress will benefit most from methods that combine multi-sensor, multi-wavelength, and cross-platform datasets designed to discriminate the widely varying surface processes in the ablation zone. Specific examples include fusing laser altimetry, radar altimetry, and optical stereophotogrammetry to enhance spatial measurement density, cross-validate surface elevation change, and diagnose radar elevation bias; fusing optical imagery, radar imagery, and microwave scatterometry to discriminate between snow, liquid water, refrozen meltwater, and bare ice near the equilibrium line altitude; combining optical reflectance with laser altimetry to map supraglacial lake, stream, and crevasse bathymetry; and monitoring the inland migration of snowlines, surface melt extent, and supraglacial hydrologic features.

[1]  F. S. A. Walter,et al.  Seasonal changes in ground‐penetrating radar signature observed at a polythermal glacier, Bylot Island, Canada , 2006 .

[2]  Haines,et al.  Elevation change of the southern greenland ice sheet , 1999, Science.

[3]  G. Barker,et al.  Photophysiology and albedo-changing potential of the ice algal community on the surface of the Greenland ice sheet , 2012, The ISME Journal.

[4]  Ian Joughin,et al.  Observations of ice‐sheet motion in Greenland using satellite radar interferometry , 1995 .

[5]  Eric Rignot,et al.  Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018 , 2019, Proceedings of the National Academy of Sciences.

[6]  J. Box,et al.  Challenges of Quantifying Meltwater Retention in Snow and Firn: An Expert Elicitation , 2016 .

[7]  T. Painter,et al.  Reflectance quantities in optical remote sensing - definitions and case studies , 2006 .

[8]  H. Jay Zwally,et al.  Mapping ice-sheet margins from radar altimetry data , 1983 .

[9]  M. Watkins,et al.  Improved methods for observing Earth's time variable mass distribution with GRACE using spherical cap mascons , 2015 .

[10]  Kirill S. Khvorostovsky,et al.  Merging and Analysis of Elevation Time Series Over Greenland Ice Sheet From Satellite Radar Altimetry , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[11]  X. Fettweis,et al.  Assessing spatio-temporal variability and trends in modelled and measured Greenland Ice Sheet albedo (2000–2013) , 2014 .

[12]  Mark R. Anderson,et al.  Variations in snowpack melt on the Greenland ice sheet based on passive-microwave measurements , 1995, Journal of Glaciology.

[13]  Marco Tedesco,et al.  Snowmelt detection over the Greenland ice sheet from SSM/I brightness temperature daily variations , 2007 .

[14]  S. Liang Narrowband to broadband conversions of land surface albedo I Algorithms , 2001 .

[15]  J. Dozier,et al.  Land-surface temperature measurement from space: physical principles and inverse modeling , 1989 .

[16]  Crystal B. Schaaf,et al.  Re-evaluation of MODIS MCD43 Greenland albedo accuracy and trends , 2013 .

[17]  R. S. Williams,et al.  Satellite‐derived, melt‐season surface temperature of the Greenland Ice Sheet (2000–2005) and its relationship to mass balance , 2006 .

[18]  David Griffin,et al.  The SARAL/AltiKa Altimetry Satellite Mission , 2015 .

[19]  J. Box,et al.  Update of annual calving front lines for 47 marine terminating outlet glaciers in Greenland (1999–2018) , 2019, Geological Survey of Denmark and Greenland Bulletin.

[20]  General relativistic laser interferometric observables of the GRACE-Follow-On mission , 2014, 1402.7111.

[21]  M. Hofton,et al.  Assessment of NASA airborne laser altimetry data using ground-based GPS data near Summit Station, Greenland , 2016 .

[22]  Kenneth C. Jezek,et al.  Mapping ice sheet margins from ERS-1 SAR and SPOT imagery , 1999 .

[23]  Xavier Fettweis,et al.  Nonlinear rise in Greenland runoff in response to post-industrial Arctic warming , 2018, Nature.

[24]  K. C. Partington Discrimination of glacier facies using multi-temporal SAR data , 1998 .

[25]  Guillaume Ramillien,et al.  Interannual variations of the mass balance of the Antarctica and Greenland ice sheets from GRACE , 2006 .

[26]  W. Krabill,et al.  Penetration depth of interferometric synthetic‐aperture radar signals in snow and ice , 2001, Geophysical Research Letters.

[27]  Dr Robert Bryant,et al.  Quantifying bioalbedo: a new physically based model and discussion of empirical methods for characterising biological influence on ice and snow albedo , 2017 .

[28]  D. Chambers,et al.  GRACE observes small‐scale mass loss in Greenland , 2008 .

[29]  W. Krabill,et al.  Elevation changes on the Greenland ice sheet from comparison of aircraft and ICESat laser-altimeter data , 2005, Annals of Glaciology.

[30]  I. Joughin,et al.  High Geothermal Heat Flow, Basal Melt, and the Origin of Rapid Ice Flow in Central Greenland , 2001, Science.

[31]  M. R. van den Broeke,et al.  Observing and Modeling Ice Sheet Surface Mass Balance , 2019, Reviews of geophysics.

[32]  M. Morlighem,et al.  A mass conservation approach for mapping glacier ice thickness , 2011, Geophysical Research Letters.

[33]  Dorothy K. Hall,et al.  Characterization of Snow and Ice Reflectance Zones On Glaciers Using Landsat Thematic Mapper Data , 1987, Annals of Glaciology.

[34]  Ingo Sasgen,et al.  Limits in detecting acceleration of ice sheet mass loss due to climate variability , 2013 .

[35]  L. Wacker,et al.  Carbonaceous particles reveal that Late Holocene dust causes the dark region in the western ablation zone of the Greenland ice sheet , 2012, Journal of Glaciology.

[36]  L. Phalippou,et al.  CryoSat: A mission to determine the fluctuations in Earth’s land and marine ice fields ☆ , 2006 .

[37]  J. Willis,et al.  Improving Bed Topography Mapping of Greenland Glaciers Using NASA’s Oceans Melting Greenland (OMG) Data , 2016 .

[38]  Jiancheng Shi,et al.  Measurements of snow- and glacier-covered areas with single-polarization SAR , 1993, Annals of Glaciology.

[39]  Kenneth C. Jezek,et al.  Radar measurements of melt zones on the Greenland Ice Sheet , 1994 .

[40]  K. Langley,et al.  CryoSat-2 delivers monthly and inter-annual surface elevation change for Arctic ice caps , 2015 .

[41]  I. M. Bahuguna,et al.  Volume loss of the Greenland ice sheet revealed by SARAL/AltiKa repeat passes radar altimetry , 2019, Journal of Earth System Science.

[42]  H. Blatter,et al.  Spatial variability in water content at the cold‐temperate transition surface of the polythermal Storglaciären, Sweden , 2004 .

[43]  Crystal B. Schaaf,et al.  Evaluation of Satellite Remote Sensing Albedo Retrievals over the Ablation Area of the Southwestern Greenland Ice Sheet , 2017 .

[44]  W. Krabill,et al.  Progressive increase in ice loss from Greenland , 2006 .

[45]  X. Fettweis,et al.  Dark ice dynamics of the south-west Greenland Ice Sheet , 2017 .

[46]  Konrad Steffen,et al.  The apparent effects of the Mt. Pinatubo Eruption on the Greenland Ice Sheet melt extent , 1997 .

[47]  K. Kjær,et al.  Digital elevation model and orthophotographs of Greenland based on aerial photographs from 1978–1987 , 2016, Scientific Data.

[48]  L Mayer,et al.  BedMachine v3: Complete Bed Topography and Ocean Bathymetry Mapping of Greenland From Multibeam Echo Sounding Combined With Mass Conservation , 2017, Geophysical research letters.

[49]  R. Francis,et al.  The European Space Agency’s Earth Explorer Mission CryoSat: measuring variability in the cryosphere , 2004, Annals of Glaciology.

[50]  Stefan Dech,et al.  Remote sensing of snow – a review of available methods , 2012 .

[51]  Yan Zhang,et al.  Snowmelt detection on the Greenland ice sheet using microwave scatterometer measurements , 2017 .

[52]  Curt H. Davis Temporal change in the extinction coefficient of snow on the Greenland ice sheet from an analysis of Seasat and Geosat altimeter data , 1996, IEEE Trans. Geosci. Remote. Sens..

[53]  Frederik J. Simons,et al.  Ice mass loss in Greenland, the Gulf of Alaska, and the Canadian Archipelago: Seasonal cycles and decadal trends , 2016 .

[54]  G. Liston,et al.  Greenland Ice Sheet Surface Mass-Balance Modeling in a 131-Yr Perspective, 1950–2080 , 2010 .

[55]  G. Liston,et al.  Greenland ice sheet surface melt extent and trends: 1960–2010 , 2011, Journal of Glaciology.

[56]  C. Shum,et al.  High resolution Greenland ice sheet inter-annual mass variations combining GRACE gravimetry and Envisat altimetry , 2015 .

[57]  Stephen G. Warren,et al.  Optical Properties of Snow , 1982 .

[58]  S. Ekholm,et al.  A full coverage, high-resolution, topographic model of Greenland computed from a variety of digital elevation data , 1996 .

[59]  David G. Long,et al.  Inferring Greenland melt and refreeze severity from SeaWinds scatterometer data , 2011 .

[60]  K. C. Partington,et al.  A model of satellite radar altimeter return from ice sheets , 1988 .

[61]  Ron Kwok,et al.  Laser altimetry sampling strategies over sea ice , 2009, Annals of Glaciology.

[62]  Wouter H. Knap,et al.  Remote sensing of the albedo and detection of the slush line on the Greenland ice sheet , 2000 .

[63]  N. DiGirolamo,et al.  Variability in the surface temperature and melt extent of the Greenland ice sheet from MODIS , 2013 .

[64]  L. B. Lok,et al.  Surface Meltwater Impounded by Seasonal Englacial Storage in West Greenland , 2018, Geophysical Research Letters.

[65]  Eric Rignot,et al.  Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise , 2011 .

[66]  Thomas L. Mote,et al.  Greenland surface melt trends 1973–2007: Evidence of a large increase in 2007 , 2007 .

[67]  Raj Kumar,et al.  Concurrent Use of OSCAT and AltiKa to Characterize Antarctic Ice Surface Features , 2015 .

[68]  J. Bamber,et al.  A review of remote sensing methods for glacier mass balance determination , 2007 .

[69]  J. Box,et al.  Greenland Ice Sheet solid ice discharge from 1986 through 2017 , 2019, Earth System Science Data.

[70]  William C. Snyder,et al.  Definition and invariance properties of structured surface BRDF , 2002, IEEE Trans. Geosci. Remote. Sens..

[71]  F. Simons,et al.  Mapping Greenland’s mass loss in space and time , 2012, Proceedings of the National Academy of Sciences.

[72]  Marcus E. Engdahl,et al.  25 years of elevation changes of the Greenland Ice Sheet from ERS, Envisat, and CryoSat-2 radar altimetry , 2018 .

[73]  J. Wahr,et al.  Improved ice loss estimate of the northwestern Greenland ice sheet , 2013 .

[74]  Michael Bevis,et al.  Accelerating changes in ice mass within Greenland, and the ice sheet’s sensitivity to atmospheric forcing , 2019, Proceedings of the National Academy of Sciences.

[75]  M. Broeke,et al.  Contemporary (1960–2012) Evolution of the Climate and Surface Mass Balance of the Greenland Ice Sheet , 2014, Surveys in Geophysics.

[76]  R. Kwok,et al.  Greenland Ice Sheet Surface Properties and Ice Dynamics from ERS-1 SAR Imagery , 1993, Science.

[77]  C. Veen,et al.  Partitioning of melt energy and meltwater fluxes in the ablation zone of the west Greenland ice sheet , 2008 .

[78]  J. Oerlemans,et al.  Dust from the dark region in the western ablation zone of the Greenland ice sheet , 2010 .

[79]  T. Vihma,et al.  Interannual Variability of Atmospheric Conditions and Surface Melt in Greenland in 2000–2014 , 2018, Journal of Geophysical Research: Atmospheres.

[80]  Lei Wang,et al.  Surface melt area variability of the Greenland ice sheet: 1979–2008 , 2009 .

[81]  Mauro Alberti,et al.  Height variation detection in polar regions from ICESat satellite altimetry , 2010, Comput. Geosci..

[82]  Jeffrey R. Key,et al.  The AVHRR Polar Pathfinder Climate Data Records , 2016, Remote. Sens..

[83]  H. Zwally,et al.  Overview of ICESat's Laser Measurements of Polar Ice, Atmosphere, Ocean, and Land , 2002 .

[84]  Manchun Li,et al.  Supraglacial rivers on the northwest Greenland Ice Sheet, Devon Ice Cap, and Barnes Ice Cap mapped using Sentinel-2 imagery , 2019, Int. J. Appl. Earth Obs. Geoinformation.

[85]  Bob E. Schutz,et al.  Comparison of Elevation Change Detection Methods From ICESat Altimetry Over the Greenland Ice Sheet , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[86]  B. Lucchitta,et al.  Antarctica: Measuring Glacier Velocity from Satellite Images , 1986, Science.

[87]  A. Strahler,et al.  A review of reflectance nomenclature used in remote sensing , 2000 .

[88]  Sebastian B. Simonsen,et al.  Envisat-derived elevation changes of the Greenland ice sheet, and a comparison with ICESat results in the accumulation area , 2015 .

[89]  J. Wahr,et al.  Acceleration of Greenland ice mass loss in spring 2004 , 2006, Nature.

[90]  B. Smith,et al.  Rates of southeast Greenland ice volume loss from combined ICESat and ASTER observations , 2008 .

[91]  M. Lüthi,et al.  Widespread Moulin Formation During Supraglacial Lake Drainages in Greenland , 2018 .

[92]  Eric Rignot,et al.  Timing and origin of recent regional ice-mass loss in Greenland , 2012 .

[93]  B. Smith,et al.  The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets , 2014 .

[94]  Lei Zheng,et al.  Mapping Radar Glacier Zones and Dry Snow Line in the Antarctic Peninsula Using Sentinel-1 Images , 2017, Remote. Sens..

[95]  K. Steffen,et al.  Comparison of satellite-derived and in-situ observations of ice and snow surface temperatures over Greenland , 2008 .

[96]  Prasad Gogineni,et al.  Wintertime storage of water in buried supraglacial lakes across the Greenland Ice Sheet , 2014 .

[97]  X. Fettweis,et al.  Greenland ice sheet albedo feedback: thermodynamics and atmospheric drivers , 2012 .

[98]  X. Fettweis,et al.  Decreasing cloud cover drives the recent mass loss on the Greenland Ice Sheet , 2017, Science Advances.

[99]  Kirill Khvorostovsky,et al.  Recent Ice-Sheet Growth in the Interior of Greenland , 2005, Science.

[100]  X. Fettweis,et al.  Future projections of the Greenland ice sheet energy balance driving the surface melt , 2013 .

[101]  Anne W. Nolin,et al.  Recent advances in remote sensing of seasonal snow , 2010, Journal of Glaciology.

[102]  Beata Csatho,et al.  Fusion of multi-sensor surface elevation data for improved characterization of rapidly changing outlet glaciers in Greenland , 2014 .

[103]  Konrad Steffen,et al.  Greenland Ice Sheet melt extent: 1979–1999 , 2001 .

[104]  T. Parrinello,et al.  CryoSat: ESA’s ice mission – Eight years in space , 2018, Advances in Space Research.

[105]  Ian Joughin,et al.  Large fluctuations in speed on Greenland's Jakobshavn Isbræ glacier , 2004, Nature.

[106]  K. Steffen,et al.  Sublimation on the Greenland Ice Sheet from automated weather station observations , 2001 .

[107]  T. Scambos,et al.  Rapid large-area mapping of ice flow using Landsat 8 , 2016 .

[108]  Xavier Fettweis,et al.  Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model , 2016 .

[109]  K. Jezek,et al.  Recent Progress in Snow and Ice Research , 1991 .

[110]  E. Mosley‐Thompson,et al.  Greenland meltwater storage in firn limited by near-surface ice formation , 2016 .

[111]  K. Kjær,et al.  An aerial view of 80 years of climate-related glacier fluctuations in southeast Greenland , 2012 .

[112]  S. Schubert,et al.  Atmospheric summer teleconnections and Greenland Ice Sheet surface mass variations: insights from MERRA-2 , 2016 .

[113]  Dorothy K. Hall,et al.  Greenland ice sheet surface temperature, melt and mass loss: 2000–06 , 2008, Journal of Glaciology.

[114]  H. Jay Zwally,et al.  Ice sheet topography by satellite altimetry , 1978, Nature.

[115]  E. Willerslev,et al.  Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since AD 1900 , 2015, Nature.

[116]  W. Lipscomb,et al.  Greenland Surface Mass Balance as Simulated by the Community Earth System Model. Part I: Model Evaluation and 1850–2005 Results , 2013 .

[117]  Luke Copland,et al.  A revised calibration of the interferometric mode of the CryoSat-2 radar altimeter improves ice height and height change measurements in western Greenland , 2017 .

[118]  Scott B. Luthcke,et al.  Assessing the performance of 20–25 m footprint waveform lidar data collected in ICESat data corridors in Greenland , 2008 .

[119]  Andrea Bordoni,et al.  Isolating the PGR signal in the GRACE data: impact on mass balance estimates in Antarctica and Greenland , 2008 .

[120]  H. Jay Zwally,et al.  Precision and Accuracy of Satellite Radar and Laser Altimeter Data Over the Continental Ice Sheets , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[121]  Curt H. Davis,et al.  Improved elevation-change measurement of the southern Greenland ice sheet from satellite radar altimetry , 2000, IEEE Trans. Geosci. Remote. Sens..

[122]  Qiang Liu,et al.  Greenland surface albedo changes in July 1981–2012 from satellite observations , 2013 .

[123]  Richard R. Forster,et al.  Shuttle imaging radar (SIR-C/X-SAR) reveals near-surface properties of the South Patagonian Icefield , 1996 .

[124]  H. Zwally,et al.  Derivation of Range and Range Distributions From Laser Pulse Waveform Analysis for Surface Elevations, Roughness, Slope, and Vegetation Heights , 2012 .

[125]  Edward Hanna,et al.  The cryoconite ecosystem on the Greenland ice sheet , 2010, Annals of Glaciology.

[126]  Beáta Csathó,et al.  A New Methodology for Detecting Ice Sheet Surface Elevation Changes From Laser Altimetry Data , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[127]  Son V. Nghiem,et al.  The extreme melt across the Greenland ice sheet in 2012 , 2012 .

[128]  Laurence C. Smith,et al.  Multi-modal albedo distributions in the ablation area of the southwestern Greenland Ice Sheet , 2014 .

[129]  Frank Flechtner,et al.  Status of the GRACE Follow-On Mission , 2013 .

[130]  David J. Harding,et al.  The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation , 2017 .

[131]  S. Ekholm,et al.  Accuracy of satellite altimeter elevations over the Greenland Ice Sheet , 1995 .

[132]  J. Key,et al.  A Satellite-Derived Climate-Quality Data Record of the Clear-Sky Surface Temperature of the Greenland Ice Sheet , 2012 .

[133]  C. K. Shum,et al.  Improved Envisat Altimetry Ice Sheet Elevation Change Data Processing Algorithms Using Repeat-Track Analysis , 2016, IEEE Geoscience and Remote Sensing Letters.

[134]  S. Nowicki,et al.  The Greenland and Antarctic ice sheets under 1.5 °C global warming , 2018, Nature Climate Change.

[135]  Kelly M. Brunt,et al.  Determination of Local Slope on the Greenland Ice Sheet Using a Multibeam Photon-Counting Lidar in Preparation for the ICESat-2 Mission , 2014, IEEE Geoscience and Remote Sensing Letters.

[136]  Yushin Ahn,et al.  Surface roughness over the northern half of the Greenland Ice Sheet from airborne laser altimetry , 2009 .

[137]  Julienne C. Stroeve,et al.  Evaluation of the MODIS (MOD10A1) daily snow albedo product over the Greenland ice sheet , 2006 .

[138]  A. Hubbard,et al.  POLYTHERMAL GLACIER HYDROLOGY: A REVIEW , 2011 .

[139]  Robert Bindschadler,et al.  Monitoring ice sheet behavior from space , 1998 .

[140]  R. Kwok,et al.  Detection of snowmelt regions on the Greenland ice sheet using diurnal backscatter change , 2001, Journal of Glaciology.

[141]  Sridhar Anandakrishnan,et al.  Ice-sheet mass balance: assessment, attribution and prognosis , 2007, Annals of Glaciology.

[142]  Reinhard Dietrich,et al.  Volume and mass changes of the Greenland ice sheet inferred from ICESat and GRACE , 2011 .

[143]  C. Schaaf,et al.  Evaluation of surface and near-surface melt characteristics on the Greenland ice sheet using MODIS and QuikSCAT data , 2009 .

[144]  Helen Amanda Fricker,et al.  The ICESat-2 Laser Altimetry Mission , 2010, Proceedings of the IEEE.

[145]  Laurence C. Smith,et al.  Sediment plume response to surface melting and supraglacial lake drainages on the Greenland ice sheet , 2009 .

[146]  X. Fettweis,et al.  Sensitivity of Greenland Ice Sheet surface mass balance to surface albedo parameterization: a study with a regional climate model , 2012 .

[147]  Julienne C. Stroeve,et al.  Development and validation of a snow albedo algorithm for the MODIS instrument , 2002, Annals of Glaciology.

[148]  Julienne C. Stroeve,et al.  Variability of AVHRR-Derived Clear-Sky Surface Temperature over the Greenland Ice Sheet , 1998 .

[149]  Eric Rignot,et al.  Mass balance of the Greenland ice sheet from 1958 to 2007 , 2008 .

[150]  D. Hall Assessment of polar climate change using satellite technology , 1988 .

[151]  C. Mätzler,et al.  Possibilities and Limits of Synthetic Aperture Radar for Snow and Glacier Surveying , 1987, Annals of Glaciology.

[152]  S. Kohshima,et al.  Communities of algae and cyanobacteria on glaciers in west Greenland , 2010 .

[153]  Nico Mölg,et al.  Mass loss of Greenland's glaciers and ice caps 2003–2008 revealed from ICESat laser altimetry data , 2013 .

[154]  Anne W. Nolin,et al.  Classification of glacier zones in western Greenland using albedo and surface roughness from the Multi-angle Imaging SpectroRadiometer (MISR) , 2007 .

[155]  Ian M. Howat,et al.  On the recent contribution of the Greenland ice sheet to sea level change , 2016 .

[156]  Tavi Murray,et al.  Seasonal variation in velocity before retreat of Jakobshavn Isbræ, Greenland , 2005 .

[157]  S. Warren,et al.  Visible and near-ultraviolet absorption spectrum of ice from transmission of solar radiation into snow. , 2006, Applied optics.

[158]  J. Oerlemans,et al.  An explanation for the dark region in the western melt zone of the Greenland ice sheet , 2010 .

[159]  J. Harper,et al.  Understanding Greenland ice sheet hydrology using an integrated multi-scale approach , 2013 .

[160]  Ian Joughin,et al.  Ice flow in the northeast Greenland ice stream , 2000, Annals of Glaciology.

[161]  U. Mikolajewicz,et al.  Coupled simulations of Greenland Ice Sheet and climate change up to A.D. 2300 , 2015 .

[162]  Son V. Nghiem,et al.  Mapping of ice layer extent and snow accumulation in the percolation zone of the Greenland ice sheet , 2005 .

[163]  G. M. Hale,et al.  Optical Constants of Water in the 200-nm to 200-microm Wavelength Region. , 1973, Applied optics.

[164]  Teruo Aoki,et al.  ADEOS-II/GLI snow/ice products — Part III: Retrieved results , 2007 .

[165]  Curt H. Davis,et al.  Geographic and seasonal variations in the surface properties of the ice sheets by satellite-radar altimetry , 1993, Journal of Glaciology.

[166]  Sheng-Hung Wang,et al.  Greenland Ice Sheet Surface Mass Balance Variability (1988–2004) from Calibrated Polar MM5 Output* , 2006 .

[167]  Bryan L. Isacks,et al.  Determination of melt-onset and refreeze timing on southeast Alaskan icefields using SSM/I diurnal amplitude variations , 2002, Annals of Glaciology.

[168]  Bob E. Schutz,et al.  ICESat Antarctic elevation data: Preliminary precision and accuracy assessment , 2006 .

[169]  K. C. Partington,et al.  Observations of the Surface Properties of the Ice Sheets by Satellite Radar Altimetry , 1989, Journal of Glaciology.

[170]  Edward Hanna,et al.  Greenland Blocking Index 1851–2015: a regional climate change signal , 2016 .

[171]  E. Mosley‐Thompson,et al.  Firn data compilation reveals widespread decrease of firn air content in western Greenland , 2019, The Cryosphere.

[172]  R. Arthern,et al.  Controls on ERS altimeter measurements over ice sheets: Footprint-scale topography, backscatter fluctuations, and the dependence of microwave penetration depth on satellite orientation , 2001 .

[173]  Sebastian B. Simonsen,et al.  Mass balance of the Greenland ice sheet (2003–2008) from ICESat data – the impact of interpolation, sampling and firn density , 2011 .

[174]  Thomas H. Painter,et al.  Detection and Quantification of Snow Algae with an Airborne Imaging Spectrometer , 2001, Applied and Environmental Microbiology.

[175]  Min Xu,et al.  Mapping Ice Algal Blooms in Southwest Greenland From Space , 2018 .

[176]  A. Nolin,et al.  Using remotely sensed data from AIRS to estimate the vapor flux on the Greenland ice sheet: Comparisons with observations and a regional climate model , 2017 .

[177]  F. Carsey,et al.  Remote sensing of ice and snow - Review and status , 1992 .

[178]  D. Vaughan,et al.  Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets , 2009, Nature.

[179]  X. Fettweis,et al.  What darkens the Greenland Ice Sheet , 2015 .

[180]  E. Zege,et al.  New algorithm to retrieve the effective snow grain size and pollution amount from satellite data , 2008, Annals of Glaciology.

[181]  E. Isaksson,et al.  Measuring snow and glacier ice properties from satellite , 2001 .

[182]  X. Fettweis,et al.  Melting trends over the Greenland ice sheet (1958–2009) from spaceborne microwave data and regional climate models , 2010 .

[183]  J. Stroeve Assessment of Greenland albedo variability from the advanced very high resolution radiometer Polar Pathfinder data set , 2001 .

[184]  W. Krabill,et al.  Testing hypotheses of the cause of peripheral thinning of the Greenland Ice Sheet: is land-terminating ice thinning at anomalously high rates? , 2008 .

[185]  E. Mosley‐Thompson,et al.  Elevation change of the Greenland Ice Sheet due to surface mass balance and firn processes, 1960–2014 , 2015 .

[186]  S. Warren,et al.  Optical constants of ice from the ultraviolet to the microwave: A revised compilation , 2008 .

[187]  Willem Jan van de Berg,et al.  A high‐resolution record of Greenland mass balance , 2016 .

[188]  Laura A. Gledhill,et al.  Inland advance of supraglacial lakes in north-west Greenland under recent climatic warming , 2017, Annals of Glaciology.

[189]  X. Fettweis,et al.  Brief communication "Important role of the mid-tropospheric atmospheric circulation in the recent surface melt increase over the Greenland ice sheet" , 2012 .

[190]  A. Richter,et al.  Precise analysis of ICESat altimetry data and assessment of the hydrostatic equilibrium for subglacial Lake Vostok, East Antarctica , 2012 .

[191]  Ingo Sasgen,et al.  Towards the inversion of GRACE gravity fields for present-day ice-mass changes and glacial-isostatic adjustment in North America and Greenland , 2012 .

[192]  P. Nienow,et al.  Seasonal evolution of supraglacial lake volume from ASTER imagery , 2009, Annals of Glaciology.

[193]  John F. Burkhart,et al.  High-Resolution Ground-Based GPS Measurements Show Intercampaign Bias in ICESat Elevation Data Near Summit, Greenland , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[194]  Reinhard Dietrich,et al.  Four decades of Antarctic surface elevation changes from multi-mission satellite altimetry , 2019, The Cryosphere.

[195]  Eric Rignot,et al.  A Reconciled Estimate of Ice-Sheet Mass Balance , 2012, Science.

[196]  Ian Joughin,et al.  Ice-sheet velocity mapping: a combined interferometric and speckle-tracking approach , 2002, Annals of Glaciology.

[197]  P. Huybrechts,et al.  Ice-dynamic projections of the Greenland ice sheet in response to atmospheric and oceanic warming , 2014 .

[198]  Ian R. Joughin,et al.  Interferometric estimation of three-dimensional ice-flow using ascending and descending passes , 1998, IEEE Trans. Geosci. Remote. Sens..

[199]  Kyle Duncan,et al.  Laser altimetry reveals complex pattern of Greenland Ice Sheet dynamics , 2014, Proceedings of the National Academy of Sciences.

[200]  Xavier Fettweis,et al.  The darkening of the Greenland ice sheet: trends, drivers, and projections (1981–2100) , 2015 .

[201]  Zhao-Liang Li,et al.  Radiance‐based validation of the V5 MODIS land‐surface temperature product , 2008 .

[202]  R. Alley,et al.  Ice-Sheet and Sea-Level Changes , 2005, Science.

[203]  Xavier Fettweis,et al.  Evidence and analysis of 2012 Greenland records from spaceborne observations, a regional climate model and reanalysis data , 2012 .

[204]  Edward Hanna,et al.  Increased Runoff from Melt from the Greenland Ice Sheet: A Response to Global Warming , 2008 .

[205]  Alan H. Strahler,et al.  Commentary on Wang and Zender—MODIS snow albedo bias at high solar zenith angles relative to theory and to in situ observations in Greenland , 2011 .

[206]  Volkmar Wismann,et al.  Monitoring of seasonal snowmelt on Greenland with ERS scatterometer data , 2000, IEEE Trans. Geosci. Remote. Sens..

[207]  Bernd Scheuchl,et al.  Comprehensive Annual Ice Sheet Velocity Mapping Using Landsat-8, Sentinel-1, and RADARSAT-2 Data , 2017, Remote. Sens..

[208]  David G. Long,et al.  Image reconstruction and enhanced resolution imaging from irregular samples , 2001, IEEE Trans. Geosci. Remote. Sens..

[209]  M. R. van den Broeke,et al.  Partitioning Recent Greenland Mass Loss , 2009, Science.

[210]  Jun Li,et al.  Modeling of firn compaction for estimating ice-sheet mass change from observed ice-sheet elevation change , 2011, Annals of Glaciology.

[211]  X. Fettweis,et al.  Greenland Ice sheet [in "State of the Climate in 2013"] , 2014 .

[212]  M. R. van den Broeke,et al.  Higher surface mass balance of the Greenland ice sheet revealed by high‐resolution climate modeling , 2009 .

[213]  Charles S. Zender,et al.  MODIS snow albedo bias at high solar zenith angles relative to theory and to in situ observations in Greenland , 2009 .

[214]  Wouter H. Knap,et al.  The surface albedo of the Greenland ice sheet : satellite-derived and in situ measurements in the Søndre Strømfjord area during the 1991 melt season , 1996 .

[215]  J. Ryan,et al.  How robust are in situ observations for validating satellite‐derived albedo over the dark zone of the Greenland Ice Sheet? , 2017 .

[216]  Anshuman Bhardwaj,et al.  UAVs as remote sensing platform in glaciology: Present applications and future prospects , 2016 .

[217]  Kevin Guerreiro,et al.  Potential for estimation of snow depth on Arctic sea ice from CryoSat-2 and SARAL/AltiKa missions , 2016 .

[218]  Ian M. Howat,et al.  Mass balance of Greenland's three largest outlet glaciers, 2000–2010 , 2011 .

[219]  T. Goelles,et al.  Albedo reduction of ice caused by dust and black carbon accumulation: a model applied to the K-transect, West Greenland , 2017, Journal of Glaciology.

[220]  J. Ryan,et al.  Meltwater storage in low-density near-surface bare ice in the Greenland ice sheet ablation zone , 2018 .

[221]  Allen Pope,et al.  Estimating supraglacial lake depth in West Greenland using Landsat 8 and comparison with other multispectral methods , 2015 .

[222]  Ian M. Howat,et al.  A new bed elevation dataset for Greenland , 2012 .

[223]  Richard R. Forster,et al.  Extensive liquid meltwater storage in firn within the Greenland ice sheet , 2014 .

[224]  Adrian Luckman,et al.  Progress in satellite remote sensing of ice sheets , 2009 .

[225]  Adrian A. Borsa,et al.  Assessment of ICESat performance at the salar de Uyuni, Bolivia , 2005 .

[226]  D. Hall,et al.  Comparison of satellite, thermochron and air temperatures at Summit, Greenland, during the winter of 2008/09 , 2010, Journal of Glaciology.

[227]  Adrian A. Borsa,et al.  A range correction for ICESat and its potential impact on ice-sheet mass balance studies , 2013 .

[228]  Eric Rignot,et al.  Ice flow dynamics of the Greenland Ice Sheet from SAR interferometry , 1995, Geophysical Research Letters.

[229]  S. Warren Can black carbon in snow be detected by remote sensing? , 2013 .

[230]  Curtis H. Davis,et al.  A surface and volume scattering retracking algorithm for ice sheet satellite altimetry , 1993, IEEE Trans. Geosci. Remote. Sens..

[231]  Charles Fowler,et al.  Intercomparison between in situ and AVHRR polar pathfinder-derived surface Albedo over Greenland , 2001 .

[232]  Uwe Mikolajewicz,et al.  Long-term ice sheet–climate interactions under anthropogenic greenhouse forcing simulated with a complex Earth System Model , 2008 .

[233]  Edward Hanna,et al.  Ice-sheet mass balance and climate change , 2013, Nature.

[234]  H. J. Zwally,et al.  Slope‐induced errors in radar altimetry over continental ice sheets , 1983 .

[235]  M. Morlighem,et al.  Vulnerability of Southeast Greenland Glaciers to Warm Atlantic Water From Operation IceBridge and Ocean Melting Greenland Data , 2018, Geophysical research letters.

[236]  David G. Long,et al.  Greenland ice-sheet surface properties observed by the Seasat-A scatterometer at enhanced resolution , 1994, Journal of Glaciology.

[237]  Frédérique Rémy,et al.  Antarctic Ice Sheet and Radar Altimetry: A Review , 2009, Remote. Sens..

[238]  Marco Tedesco,et al.  Toward Monitoring Surface and Subsurface Lakes on the Greenland Ice Sheet Using Sentinel-1 SAR and Landsat-8 OLI Imagery , 2017, Front. Earth Sci..

[239]  T. Painter,et al.  Lidar measurement of snow depth: a review , 2013, Journal of Glaciology.

[240]  Dorthe Dahl-Jensen,et al.  Greenland 2012 melt event effects on CryoSat‐2 radar altimetry , 2014 .

[241]  Frank Flechtner,et al.  What Can be Expected from the GRACE-FO Laser Ranging Interferometer for Earth Science Applications? , 2016, Surveys in Geophysics.

[242]  Dorothy K. Hall,et al.  Glaciological applications with Landsat-7 imagery: Early assessments , 2001 .

[243]  F. Ticconi,et al.  ESA ice sheet CCI: derivation of the optimal method for surface elevation change detection of the Greenland ice sheet – round robin results , 2015 .

[244]  A. Fleming,et al.  Understanding ice-sheet mass balance: progress in satellite altimetry and gravimetry , 2010, Journal of Glaciology.

[245]  Guillaume Ramillien,et al.  Detection of Continental Hydrology and Glaciology Signals from GRACE: A Review , 2008 .

[246]  S. Swenson,et al.  Post‐processing removal of correlated errors in GRACE data , 2006 .

[247]  H. Zwally,et al.  Microwave Emission From Snow and Glacier Ice , 1976, Journal of Glaciology.

[248]  Jacques Verron,et al.  Ice sheet survey over Antarctica using satellite altimetry: ERS-2, Envisat, SARAL/AltiKa, the key importance of continuous observations along the same repeat orbit , 2014 .

[249]  David G. Long,et al.  Polar Applications of Spaceborne Scatterometers , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[250]  J G Marsh,et al.  Growth of Greenland Ice Sheet: Measurement , 1989, Science.

[251]  Isabella Velicogna,et al.  Time‐variable gravity observations of ice sheet mass balance: Precision and limitations of the GRACE satellite data , 2013 .

[252]  Anne W. Nolin,et al.  Arctic Sea Ice Surface Roughness Estimated from Multi-Angular Reflectance Satellite Imagery , 2018, Remote. Sens..

[253]  J. Ryan,et al.  Dark zone of the Greenland Ice Sheet controlled by distributed biologically-active impurities , 2018, Nature Communications.

[254]  Myoung-Jong Noh,et al.  An improved mass budget for the Greenland ice sheet , 2013 .

[255]  D. Gallaher,et al.  The process of bringing dark data to light: The rescue of the early Nimbus satellite data , 2015 .

[256]  K. Steffen,et al.  Surface Temperature from ERS-1 ATSR Infrared Thermal Satellite Data in Polar Regions , 1996 .

[257]  M. Broeke,et al.  The modelled liquid water balance of the Greenland Ice Sheet , 2017 .

[258]  J. Wadham,et al.  Seasonal changes of ice surface characteristics and productivity in the ablation zone of the Greenland Ice Sheet , 2014 .

[259]  A. Nolin,et al.  The changing albedo of the Greenland ice sheet: implications for climate modeling , 1997, Annals of Glaciology.

[260]  Jack L. Saba,et al.  Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise: 1992-2002 , 2005 .

[261]  Laurence C. Smith,et al.  Seasonal climatic forcing of alpine glaciers revealed with orbital synthetic aperture radar , 1997 .

[262]  Jack L. Saba,et al.  Greenland ice sheet mass balance: distribution of increased mass loss with climate warming; 2003–07 versus 1992–2002 , 2011, Journal of Glaciology.

[263]  T. Aoki,et al.  Inter-Annual and Geographical Variations in the Extent of Bare Ice and Dark Ice on the Greenland Ice Sheet Derived from MODIS Satellite Images , 2016, Front. Earth Sci..

[264]  L. Smith,et al.  Supraglacial Streams and Rivers , 2019, Annual Review of Earth and Planetary Sciences.

[265]  H. Zwally,et al.  Growth of Greenland Ice Sheet: Interpretation , 1989, Science.

[266]  J. Utke,et al.  Inferred basal friction and surface mass balance of the Northeast Greenland Ice Stream using data assimilation of ICESat (Ice Cloud and land Elevation Satellite) surface altimetry and ISSM (Ice Sheet System Model) , 2014 .

[267]  M. R. van den Broeke,et al.  Seasonal to decadal variability in ice discharge from the Greenland Ice Sheet. , 2018, The cryosphere.

[268]  Ajai,et al.  Ice Height and Backscattering Coefficient Variability over Greenland Ice Sheets Using SARAL Radar Altimeter , 2015 .

[269]  P. Christoffersen,et al.  Observation Bias Correction Reveals More Rapidly Draining Lakes on the Greenland Ice Sheet , 2017 .

[270]  Lijun Xu,et al.  Surface slope and roughness measurement using ICESat/GLAS elevation and laser waveform , 2016 .

[271]  J. Oerlemans,et al.  Narrowband-to-broadband albedo conversion for glacier ice and snow: equations based on modeling and ranges of validity of the equations , 2004 .

[272]  Scott B. Luthcke,et al.  The land ice contribution to sea level during the satellite era , 2017, Environmental Research Letters.

[273]  Steen Savstrup Kristensen,et al.  Basin-scale partitioning of Greenland ice sheet mass balance components (2007–2011) , 2015 .

[274]  Ian Joughin,et al.  Limits to future expansion of surface‐melt‐enhanced ice flow into the interior of western Greenland , 2015 .

[275]  H. Zwally,et al.  Overview of the ICESat Mission , 2005 .

[276]  Zebing Zhou,et al.  Assessing backscatter change due to backscatter gradient over the Greenland ice sheet using Envisat and SARAL altimetry , 2018, Journal of Geodynamics.

[277]  A. Anesio,et al.  Biological impact on Greenland's albedo , 2014 .

[278]  X. Fettweis,et al.  Evaluation of Reconstructions of Snow/Ice Melt in Greenland by Regional Atmospheric Climate Models Using Laser Altimetry Data , 2018, Geophysical Research Letters.

[279]  S. Kohshima,et al.  Spatial distribution and abundance of red snow algae on the Harding Icefield, Alaska derived from a satellite image , 2006 .

[280]  Angelika Humbert,et al.  Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2 , 2014 .

[281]  A. Gardner,et al.  A review of snow and ice albedo and the development of a new physically based broadband albedo parameterization , 2010 .

[282]  Duncan J. Wingham,et al.  Importance of seasonal and annual layers in controlling backscatter to radar altimeters across the percolation zone of an ice sheet , 2006 .

[283]  S. Warren,et al.  Effects of bubbles, cracks, and volcanic tephra on the spectral albedo of bare ice near the Transantarctic Mountains: Implications for sea glaciers on Snowball Earth , 2013 .

[284]  E. Fry,et al.  Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements. , 1997, Applied optics.

[285]  Kang Yang,et al.  Supraglacial Streams on the Greenland Ice Sheet Delineated From Combined Spectral–Shape Information in High-Resolution Satellite Imagery , 2012, IEEE Geoscience and Remote Sensing Letters.

[286]  Denis Blumstein,et al.  Envisat and SARAL/AltiKa Observations of the Antarctic Ice Sheet: A Comparison Between the Ku-band and Ka-band , 2015 .

[287]  Xavier Fettweis,et al.  The role of albedo and accumulation in the 2010 melting record in Greenland , 2011 .

[288]  Jonathan L. Bamber,et al.  A new, high‐resolution digital elevation model of Greenland fully validated with airborne laser altimeter data , 2001 .

[289]  Mark R. Anderson,et al.  Passive microwave-derived spatial and temporal variations of summer melt on the Greenland ice sheet , 1993 .

[290]  Robin E. Bell,et al.  The role of subglacial water in ice-sheet mass balance , 2008 .

[291]  I. Velicogna Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE , 2009 .

[292]  Ian M. Howat,et al.  Continued evolution of Jakobshavn Isbrae following its rapid speedup , 2008 .

[293]  B. Josse,et al.  Contribution of light-absorbing impurities in snow to Greenland/'s darkening since 2009 , 2014 .

[294]  Ian Joughin,et al.  Changes in ice front position on Greenland's outlet glaciers from 1992 to 2007 , 2008 .

[295]  D. Rowlands,et al.  Reduction of ICESat systematic geolocation errors and the impact on ice sheet elevation change detection , 2005 .

[296]  Crystal B. Schaaf,et al.  Accuracy assessment of the MODIS 16-day albedo product for snow: comparisons with Greenland in situ measurements , 2005 .

[297]  N. C. Strugnell,et al.  First operational BRDF, albedo nadir reflectance products from MODIS , 2002 .

[298]  S. Mernild,et al.  A predictive model for the spectral “bioalbedo” of snow , 2017 .

[299]  Reinhard Dietrich,et al.  A processing system to monitor Greenland outlet glacier velocity variations at decadal and seasonal time scales utilizing the Landsat imagery , 2015 .

[300]  Thorsten Markus,et al.  MABEL Photon-Counting Laser Altimetry Data in Alaska for ICESat-2 Simulations and Development , 2014 .

[301]  H. Jay Zwally,et al.  Analysis and retracking of continental ice sheet radar altimeter waveforms , 1983 .

[302]  Louise Sandberg Sørensen,et al.  Implications of changing scattering properties on Greenland ice sheet volume change from Cryosat-2 altimetry , 2017 .

[303]  Vena W. Chu,et al.  Greenland ice sheet hydrology , 2014 .

[304]  J. Box,et al.  Evidence of meltwater retention within the Greenland ice sheet , 2012 .

[305]  David G. Long,et al.  Comparison of methods for melt detection over Greenland using active and passive microwave measurements , 2006 .

[306]  R. Cullen,et al.  Interferometric swath processing of Cryosat data for glacial ice topography , 2013 .

[307]  W. Krabill,et al.  A comparison of Greenland ice-sheet volume changes derived from altimetry measurements , 2008, Journal of Glaciology.

[308]  R. Bindschadler,et al.  Satellite-Image-Derived Velocity Field of an Antarctic Ice Stream , 1991, Science.

[309]  B. Smith,et al.  A complete map of Greenland ice velocity derived from satellite data collected over 20 years , 2017, Journal of Glaciology.

[310]  Xavier Fettweis,et al.  Greenland Ice Sheet Surface Mass Loss: Recent Developments in Observation and Modeling , 2017, Current Climate Change Reports.

[311]  F. E. Nicodemus,et al.  Geometrical considerations and nomenclature for reflectance , 1977 .

[312]  A. Muir,et al.  CryoSat-2 swath interferometric altimetry for mapping ice elevation and elevation change , 2017, Advances in Space Research.

[313]  I. Willis,et al.  High-resolution modelling of the seasonal evolution of surface water storage on the Greenland Ice Sheet , 2013 .

[314]  J. Legarsky,et al.  Coherent radar ice thickness measurements over the Greenland ice sheet , 2001 .

[315]  K. Steffen,et al.  Melting of small Arctic ice caps observed from ERS scatterometer time series , 2003 .

[316]  Curt H. Davis,et al.  Growth of the Greenland ice sheet: a performance assessment of altimeter retracking algorithms , 1995, IEEE Trans. Geosci. Remote. Sens..

[317]  H. Jay Zwally,et al.  Surface elevation contours of Greenland and Antarctic ice sheets , 1983 .

[318]  Konrad Steffen,et al.  Passive microwave‐derived snow melt regions on the Greenland Ice Sheet , 1995 .

[319]  Pierre Defourny,et al.  Survey of Hyperspectral Earth Observation Applications from Space in the Sentinel-2 Context , 2018, Remote. Sens..

[320]  Shihyan Lee,et al.  A review of global satellite-derived snow products , 2012 .

[321]  Eric Rignot,et al.  Mass Balance of Polar Ice Sheets , 2002, Science.

[322]  Curt H. Davis,et al.  A robust threshold retracking algorithm for measuring ice-sheet surface elevation change from satellite radar altimeters , 1997, IEEE Trans. Geosci. Remote. Sens..

[323]  Jonathan L. Bamber,et al.  The accuracy of satellite radar altimeter data over the Greenland ice sheet determined from airborne laser data , 1998 .

[324]  N. Molotch,et al.  Algae Drive Enhanced Darkening of Bare Ice on the Greenland Ice Sheet , 2017 .

[325]  Julienne C. Stroeve,et al.  New methods to infer snow albedo from the MISR instrument with applications to the Greenland ice sheet , 2002, IEEE Trans. Geosci. Remote. Sens..

[326]  W. Lipscomb,et al.  Greenland Surface Mass Balance as Simulated by the Community Earth System Model. Part II: Twenty-First-Century Changes , 2014 .

[327]  Dorothy K. Hall,et al.  Comparison of Near-Surface Air Temperatures and MODIS Ice-Surface Temperatures at Summit, Greenland (2008-13) , 2014 .

[328]  Isabella Velicogna,et al.  Greenland mass balance from GRACE , 2005 .

[329]  Benoit Rivard,et al.  Melt season duration and ice layer formation on the Greenland ice sheet, 2000–2004 , 2007 .

[330]  Pavel Ditmar,et al.  Estimation of volume change rates of Greenland's ice sheet from ICESat data using overlapping footprints , 2008 .

[331]  D. Harding,et al.  Snow Grain Size Retrieval over the Polar Ice Sheets with the Ice, Cloud, and land Elevation Satellite (ICESat) Observations. , 2017, Journal of quantitative spectroscopy & radiative transfer.

[332]  J. Abshire,et al.  Geoscience Laser Altimeter System (GLAS) on the ICESat Mission: On‐orbit measurement performance , 2005 .

[333]  Thomas H. Painter,et al.  MULTISPECTRAL AND HYPERSPECTRAL REMOTE SENSING OF ALPINE SNOW PROPERTIES , 2004 .

[334]  Larry Di Girolamo,et al.  Generalizing the definition of the bi-directional reflectance distribution function , 2003 .

[335]  C. H. Davis,et al.  The effect of sub-surface volume scattering on the accuracy of ice-sheet altimeter retracking algorithms , 1993, Proceedings of IGARSS '93 - IEEE International Geoscience and Remote Sensing Symposium.

[336]  R. Barry,et al.  Optical Remote Sensing of Glacier Characteristics: A Review with Focus on the Himalaya , 2008, Sensors.

[337]  Theodore A. Scambos,et al.  Surface roughness characterizations of sea ice and ice sheets: case studies with MISR data , 2002, IEEE Trans. Geosci. Remote. Sens..

[338]  C. Legleiter,et al.  Mapping the bathymetry of supraglacial lakes and streams on the Greenland ice sheet using field measurements and high-resolution satellite images , 2013 .

[339]  Mapping snow grain size on the ice sheets with a laser altimeter , 1998, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).

[340]  Xiaoli Sun,et al.  ICESat measurement of Greenland ice sheet surface slope and roughness , 2005, Annals of Glaciology.

[341]  J. Ryan,et al.  Greenland Ice Sheet surface melt amplified by snowline migration and bare ice exposure , 2019, Science Advances.

[342]  David M. Winker,et al.  An overview of LITE: NASA's Lidar In-space Technology Experiment , 1996, Proc. IEEE.

[343]  S. Swenson,et al.  Accuracy of GRACE mass estimates , 2006 .