Optimal processing of reversible quantum channels
暂无分享,去创建一个
[1] G. D’Ariano,et al. Minimal computational-space implementation of multiround quantum protocols , 2010, 1006.1780.
[2] Robert W. Spekkens,et al. Foundations of Quantum Mechanics , 2007 .
[3] Giacomo Mauro D'Ariano,et al. Quantum learning algorithms for quantum measurements , 2011 .
[4] G. D’Ariano,et al. Informational derivation of quantum theory , 2010, 1011.6451.
[5] William J Munro,et al. Quantum teleportation of optical quantum gates. , 2003, Physical review letters.
[6] R. Werner. OPTIMAL CLONING OF PURE STATES , 1998, quant-ph/9804001.
[7] Gilles Brassard,et al. Is information the key? , 2005 .
[8] Buzek,et al. Quantum copying: Beyond the no-cloning theorem. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[9] Hans Halvorson,et al. Deep beauty : understanding the quantum world through mathematical innovation , 2011 .
[10] G. D’Ariano,et al. Optimal quantum tomography of States, measurements, and transformations. , 2008, Physical review letters.
[11] G M D'Ariano,et al. Using entanglement improves the precision of quantum measurements. , 2001, Physical review letters.
[12] G. D’Ariano,et al. Transforming quantum operations: Quantum supermaps , 2008, 0804.0180.
[13] L. Ballentine,et al. Probabilistic and Statistical Aspects of Quantum Theory , 1982 .
[14] G. D’Ariano,et al. Theoretical framework for quantum networks , 2009, 0904.4483.
[15] I. Chuang,et al. Programmable Quantum Gate Arrays , 1997, quant-ph/9703032.
[16] Giacomo Mauro D'Ariano,et al. Memory cost of quantum protocols , 2012 .
[17] Seth Lloyd,et al. Continuous Variable Quantum Cryptography using Two-Way Quantum Communication , 2006, ArXiv.
[18] G. D’Ariano,et al. Quantum information becomes classical when distributed to many users. , 2006, Physical review letters.
[19] Minimum error discrimination of Pauli channels , 2005, quant-ph/0506072.
[20] G. D’Ariano,et al. Quantum networks: General theory and applications , 2011, 1601.04864.
[21] D. Deutsch,et al. Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[22] Giulio Chiribella,et al. Information-disturbance tradeoff in estimating a unitary transformation , 2010 .
[23] J. Cirac,et al. Optimal Purification of Single Qubits , 1998, quant-ph/9812075.
[24] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[25] Maxim Raginsky,et al. A fidelity measure for quantum channels , 2001, quant-ph/0107108.
[26] Markus P. Mueller,et al. A derivation of quantum theory from physical requirements , 2010, 1004.1483.
[27] G. D’Ariano,et al. Optimal quantum learning of a unitary transformation , 2009, 0903.0543.
[28] Peter W. Shor,et al. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..
[29] Debbie W. Leung,et al. Adaptive versus nonadaptive strategies for quantum channel discrimination , 2009, 0909.0256.
[30] London,et al. Quantum Remote Control: Teleportation of Unitary Operations , 2000, quant-ph/0005061.
[31] Č. Brukner,et al. Quantum correlations with no causal order , 2011, Nature Communications.
[32] T. Ralph,et al. Quantum process tomography of a controlled-NOT gate. , 2004, Physical review letters.
[33] G. D’Ariano,et al. Quantum computation with programmable connections between gates , 2011, 1109.5987.
[34] Seth Lloyd,et al. Quantum process tomography of the quantum Fourier transform. , 2004, The Journal of chemical physics.
[35] Man-Duen Choi. Completely positive linear maps on complex matrices , 1975 .