Sequential segmental analysis of the crocodilian heart

Differences between hearts of crocodilians and those of mammals and birds are only partly understood because there is no standardised approach and terminology for describing cardiac structure. Whereas most reptiles have an undivided ventricle, crocodilians have a fully septated ventricle. Their hearts, therefore, are more readily comparable with the hearts of mammals and birds. Here, we describe the heart of a crocodile (Crocodylus noliticus). We use the versatile sequential segmental approach to analysis, juxtaposing several key views of the crocodilian heart to the comparable views of human hearts. In crocodiles, the atrial and ventricular septums are complete but, unlike in placental mammals, the atrial septum is without an oval fossa. The myocardial component of the crocodilian ventricular septum dominates, but the membranous septum likely makes up a greater proportion than in any mammal. In the crocodile, the aortic trunk takes its origin from the left ventricle and is not wedged between the atrioventricular junctions. Consequently, there is a common atrioventricular junction, albeit with separate right and left atrioventricular valvar orifices. As in mammals, nonetheless, the crocodilian left atrioventricular valvar orifice is cranial to the right atrioventricular valvar orifice. By applying a method of analysis and terminology usually restricted to the human heart, we build from the considerable existing literature to show neglected and overlooked shared features, such as the offset between the left and right atrioventricular valvar orifices. Such commonalities are surprising given the substantial evolutionary divergence of the archosaur and synapsid lineages, and likely reflect evolutionarily shared morphogenetic programmes.

[1]  A. Moorman,et al.  Formation of the Building Plan of the Human Heart: Morphogenesis, Growth, and Differentiation , 2011, Circulation.

[2]  D. Carrier,et al.  Evidence for Endothermic Ancestors of Crocodiles at the Stem of Archosaur Evolution , 2004, Physiological and Biochemical Zoology.

[3]  G. Webb Comparative cardiac anatomy of the reptilia. III. The heart of crocodilians and an hypothesis on the completion of the interventricular septum of crocodilians and birds , 1979, Journal of morphology.

[4]  F. Davies,et al.  The conducting (connecting) system of the crocodilian heart. , 1952, Journal of anatomy.

[5]  Peter J. Scambler,et al.  Development of the Heart , 2019, Pathology of Heart Disease in the Fetus, Infant and Child.

[6]  R. Abdulla The Segmental Approach to the Diagnosis of Congenital Heart Disease , 2000, Pediatric Cardiology.

[7]  Robert H. Anderson,et al.  Double outlet right ventricle , 2001, Cardiology in the Young.

[8]  A. Moorman,et al.  The development of the avian conduction system, a review. , 1991, European journal of morphology.

[9]  P. Carr,et al.  Comparative anatomy of the foramen ovale in the hearts of cetaceans , 2007, Journal of anatomy.

[10]  A. Cook,et al.  Problems with the right ventricular outflow tract: a review of morphologic features and current therapeutic options , 2004, Cardiology in the Young.

[11]  H. Nathan,et al.  Myocardial atrio-venous junctions and extensions (sleeves) over the pulmonary and caval veins , 1970, Thorax.

[12]  Edwin S. Goodrich,et al.  Studies on the Structure and Development of Vertebrates , 1958 .

[13]  F. Macartney,et al.  Sequential chamber localization--logical approach to diagnosis in congenital heart disease. , 1976, British heart journal.

[14]  Arie O. Verkerk,et al.  Identification and Functional Characterization of Cardiac Pacemaker Cells in Zebrafish , 2012, PloS one.

[15]  A. Moorman,et al.  Evolution and development of the building plan of the vertebrate heart. , 2013, Biochimica et biophysica acta.

[16]  U. Rowlatt Comparative anatomy of the heart of mammals , 1990 .

[17]  A P Farrell,et al.  Comparative cardiovascular physiology: future trends, opportunities and challenges , 2014, Acta physiologica.

[18]  A Keith,et al.  The Form and Nature of the Muscular Connections between the Primary Divisions of the Vertebrate Heart. , 1907, Journal of anatomy and physiology.

[19]  Robert H. Anderson,et al.  Development of the heart: (2) Septation of the atriums and ventricles , 2003, Heart.

[20]  A. C. Durán,et al.  Formation of cartilage in the heart of the Spanish terrapin, Mauremys leprosa (Reptilia, Chelonia) , 2003, Journal of morphology.

[21]  F. Davies,et al.  THE CONDUCTING SYSTEM OF THE VERTEBRATE HEART* , 1942, British heart journal.

[22]  Robert H. Anderson,et al.  Cardiac anatomy revisited , 2004, Journal of anatomy.

[23]  Richard P Harvey,et al.  Pitx2c and Nkx2-5 Are Required for the Formation and Identity of the Pulmonary Myocardium , 2007, Circulation research.

[24]  Robert H. Anderson,et al.  Development of the heart: (3) Formation of the ventricular outflow tracts, arterial valves, and intrapericardial arterial trunks , 2003, Heart.

[25]  Robert H. Anderson,et al.  Development and structure of the atrial septum , 2002, Heart.

[26]  D. Sumner Cardiovascular shunts: Phylogenetic, ontogenetic, and clinical aspects , 1987 .

[27]  P. D. de Bruin,et al.  Evolution and Development of Ventricular Septation in the Amniote Heart , 2014, PloS one.

[28]  A. Moorman,et al.  Identifying the Evolutionary Building Blocks of the Cardiac Conduction System , 2012, PloS one.

[29]  R. F. Shaner Comparative development of the bulbus and ventricles of the vertebrate heart with special reference to Spitzer's theory of heart malformations , 1962, The Anatomical record.

[30]  G. Steding,et al.  Developmental aspects of the sinus valves and the sinus venosus septum of the right atrium in human embryos , 2006, Anatomy and Embryology.

[31]  D. M. Bakker,et al.  Extreme variation in the atrial septation of caecilians (Amphibia: Gymnophiona) , 2015, Journal of anatomy.

[32]  T. Mohun,et al.  Clarifying the morphology of the ostium primum defect , 2015, Journal of anatomy.

[33]  R. Elsey,et al.  Coronary blood flow in the anesthetized American alligator (Alligator mississippiensis). , 2016, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[34]  Scott F. Gilbert,et al.  Reptilian heart development and the molecular basis of cardiac chamber evolution , 2009, Nature.

[35]  N A Brown,et al.  Septation and valvar formation in the outflow tract of the embryonic chick heart , 2001, The Anatomical record.

[36]  Antoon F. M. Moorman,et al.  Evolution of the Sinus Venosus from Fish to Human , 2014 .

[37]  A. Moorman,et al.  Development of the Hearts of Lizards and Snakes and Perspectives to Cardiac Evolution , 2013, PloS one.

[38]  A. Moorman,et al.  The hypertrabeculated (noncompacted) left ventricle is different from the ventricle of embryos and ectothermic vertebrates. , 2016, Biochimica et biophysica acta.

[39]  Robert H. Anderson,et al.  Sequential segmental analysis of congenital heart disease , 2006, Pediatric Cardiology.

[40]  R. Baudinette,et al.  Central cardiovascular shunts in the perinatal marsupial , 1995, The Anatomical record.

[41]  Lamers Wh,et al.  The development of the avian conduction system, a review. , 1991 .

[42]  David J. Miller,et al.  Gene Regulatory Networks in the Evolution and Development of the Heart , 2006 .

[43]  M. Axelsson Physiological Society Symposium ‐ Vagal Control: From Axolotl to Man , 2001 .

[44]  A. Moorman,et al.  Evolutionary Aspects of Cardiac Development , 2016 .

[45]  R. Oestreich,et al.  I. Das Herz , 1905 .

[46]  F. White Circulation in the reptilian heart (Caiman sclerops) , 1956, The Anatomical record.

[47]  Robert H. Anderson,et al.  Development of the atrial septum in relation to postnatal anatomy and interatrial communications , 2016, Heart.

[48]  Craig E. Franklin,et al.  From anatomy to angioscopy: 164 years of crocodilian cardiovascular research, recent advances, and speculations , 1997 .

[49]  A. Moorman,et al.  Structure and function of the hearts of lizards and snakes , 2014, Biological reviews of the Cambridge Philosophical Society.