Possibilities of Zero-Error Recognition by Dissimilarity Representations

Feature based approaches to pattern recognition suffer from the fact that feature representations of different classes of objects may overlap. This is the consequence of reducing the description of an object to a feature vector. As a result an error free recognition system is even asymptotically (for infinite training sizes) impossible. In this paper it is argued that this limitation does not hold for dissimilarity based representations. Suggestions are made how this may be exploited in practice.

[1]  Daphna Weinshall,et al.  Classification with Nonmetric Distances: Image Retrieval and Class Representation , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Anil K. Jain,et al.  A modified Hausdorff distance for object matching , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[3]  W. Greub Linear Algebra , 1981 .

[4]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[5]  Yoshua Bengio,et al.  Pattern Recognition and Neural Networks , 1995 .

[6]  Robert P. W. Duin,et al.  Relational discriminant analysis , 1999, Pattern Recognit. Lett..

[7]  P. Groenen,et al.  Modern multidimensional scaling , 1996 .

[8]  Anil K. Jain,et al.  Template-based online character recognition , 2001, Pattern Recognit..

[9]  Peter E. Hart,et al.  Nearest neighbor pattern classification , 1967, IEEE Trans. Inf. Theory.

[10]  Thomas M. Cover,et al.  Geometrical and Statistical Properties of Systems of Linear Inequalities with Applications in Pattern Recognition , 1965, IEEE Trans. Electron. Comput..

[11]  Shimon Edelman,et al.  Representation and recognition in vision , 1999 .

[12]  Robert P. W. Duin,et al.  Classifiers in almost empty spaces , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[13]  Lev Goldfarb,et al.  A unified approach to pattern recognition , 1984, Pattern Recognit..

[14]  Filiberto Pla,et al.  Prototype selection for the nearest neighbour rule through proximity graphs , 1997, Pattern Recognit. Lett..

[15]  Robert P. W. Duin,et al.  A Generalized Kernel Approach to Dissimilarity-based Classification , 2002, J. Mach. Learn. Res..

[16]  Robert P. W. Duin,et al.  Classifiers for dissimilarity-based pattern recognition , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[17]  Robert P. W. Duin,et al.  AUTOMATIC PATTERN RECOGNITION BY SIMILARITY REPRESENTATIONS - A NOVEL APPROACH , 2001 .

[18]  Anil K. Jain,et al.  Representation and Recognition of Handwritten Digits Using Deformable Templates , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Uri Lipowezky Selection of the optimal prototype subset for 1-NN classification , 1998, Pattern Recognit. Lett..

[20]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  N. JARDINE,et al.  A New Approach to Pattern Recognition , 1971, Nature.