A self-dual poset on objects counted by the Catalan numbers and a type-B analogue

Abstract We introduce two partially ordered sets, P n A and P n B , of the same cardinalities as the type-A and type-B noncrossing partition lattices. The ground sets of P n A and P n B are subsets of the symmetric and the hyperoctahedral groups, consisting of permutations which avoid certain patterns. The order relation is given by (strict) containment of the descent sets. In each case, by means of an explicit order-preserving bijection, we show that the poset of restricted permutations is an extension of the refinement order on noncrossing partitions. Several structural properties of these permutation posets follow, including self-duality and the strong Sperner property. We also discuss posets Q n A and Q n B similarly associated with noncrossing partitions, defined by means of the excedance sets of suitable pattern-avoiding subsets of the symmetric and hyperoctahedral groups.

[1]  Miklós Bóna Exact Enumeration of 1342-Avoiding Permutations: A Close Link with Labeled Trees and Planar Maps , 1997, J. Comb. Theory, Ser. A.

[2]  D. Zeilberger,et al.  The Enumeration of Permutations with a Prescribed Number of “Forbidden” Patterns , 1996, math/9808080.

[3]  Alexandru Nica,et al.  A “Fourier Transform” for Multiplicative Functions on Non-Crossing Partitions , 1997 .

[4]  Rodica Simion,et al.  Chains in the lattice of noncrossing partitions , 1994, Discret. Math..

[5]  R. Stanley Log‐Concave and Unimodal Sequences in Algebra, Combinatorics, and Geometry a , 1989 .

[6]  Francesco Brenti,et al.  Combinatorial Properties of the Kazhdan–LusztigR-Polynomials forSn , 1997 .

[7]  Gilles Schaeffer,et al.  A Bijective Census of Nonseparable Planar Maps , 1998, J. Comb. Theory, Ser. A.

[8]  Rodica Simion,et al.  On the structure of the lattice of noncrossing partitions , 1991, Discret. Math..

[9]  Julian West,et al.  Generating trees and forbidden subsequences , 1996, Discret. Math..

[10]  Mikl Os,et al.  Exact Enumeration of 1342-avoiding Permutations a Close Link with Labeled Trees and Planar Maps , 1997 .

[11]  Patricia Hersh Deformation of Chains via a Local Symmetric Group Action , 1999, Electron. J. Comb..

[12]  Einar Steingrímsson,et al.  Permutation Statistics of Indexed Permutations , 1994, Eur. J. Comb..

[13]  Serge Dulucq,et al.  Permutations with forbidden subsequences and nonseparable planar maps , 1996, Discret. Math..

[14]  Mike D. Atkinson,et al.  Restricted permutations , 1999, Discret. Math..

[15]  Doron Zeilberger,et al.  A proof of Julian West's conjecture that the number of two-stacksortable permutations of length n is 2(3n)!/((n + 1)!(2n + 1)!) , 1992, Discret. Math..

[16]  Victor Reiner,et al.  Non-crossing partitions for classical reflection groups , 1997, Discret. Math..

[17]  Paul H. Edelman Chain enumeration and non-crossing partitions , 1980, Discret. Math..

[18]  Sara Billey,et al.  Pattern Avoidance and Rational Smoothness of Schubert Varieties , 1998 .

[19]  Richard P. Stanley,et al.  Parking functions and noncrossing partitions , 1996, Electron. J. Comb..

[20]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[21]  Robert E. Tarjan,et al.  Sorting Using Networks of Queues and Stacks , 1972, J. ACM.

[22]  Germain Kreweras,et al.  Sur les partitions non croisees d'un cycle , 1972, Discret. Math..