Solid Electrolyte Interphase on Lithium-Ion Carbon Nanofiber Electrodes by Atomic and Molecular Layer Deposition

[1]  G. Parsons,et al.  Atomic layer deposition of conformal inorganic nanoscale coatings on three-dimensional natural fiber systems: effect of surface topology on film growth characteristics. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[2]  M. Armand,et al.  Building better batteries , 2008, Nature.

[3]  Yanfa Yan,et al.  Conformal surface coatings to enable high volume expansion Li-ion anode materials. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[4]  Martin Winter,et al.  Acrylic acid nitrile, a film-forming electrolyte component for lithium-ion batteries, which belongs to the family of additives containing vinyl groups , 2003 .

[5]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[6]  Shigang Sun,et al.  Formation and Influence Factors of Solid Electrolyte Interphase Film on the Negative Electrode Surface in Lithium-Ion Batteries , 2005 .

[7]  Fu-Ming Wang,et al.  Electrochemical investigation of an artificial solid electrolyte interface for improving the cycle-ability of lithium ion batteries using an atomic layer deposition on a graphite electrode , 2013 .

[8]  J. Dahn,et al.  Study of Irreversible Capacities for Li Insertion in Hard and Graphitic Carbons , 1997 .

[9]  P. Kumta,et al.  Nanocomposites of silicon/titanium carbide synthesized using high-energy mechanical milling for use as anodes in lithium-ion batteries , 2005 .

[10]  S. George,et al.  Molecular Layer Deposition of Alucone Polymer Films Using Trimethylaluminum and Ethylene Glycol , 2008 .

[11]  Younan Xia,et al.  Carbon nanotubes by electrospinning with a polyelectrolyte and vapor deposition polymerization. , 2007, Nano letters.

[12]  Akeel A. Shah,et al.  A transient PEMFC model with CO poisoning and mitigation by O2 bleeding and Ru-containing catalyst , 2007 .

[13]  S. George,et al.  Molecular layer deposition of poly(p-phenylene terephthalamide) films using terephthaloyl chloride and p-phenylenediamine. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[14]  David C. Miller,et al.  Thermomechanical properties of aluminum alkoxide (alucone) films created using molecular layer deposition , 2009 .

[15]  R. Spontak,et al.  Atomic layer deposition on electrospun polymer fibers as a direct route to AL2O3 microtubes with precise wall thickness control. , 2007, Nano letters.

[16]  G. Michler,et al.  One-Dimensional Arrangement of Gold Nanoparticles by Electrospinning , 2005 .

[17]  Hyungjun Kim,et al.  Atomic layer deposition of metal and nitride thin films: Current research efforts and applications for semiconductor device processing , 2003 .

[18]  S. George,et al.  Molecular Layer Deposition of Nylon 66 Films Examined Using in Situ FTIR Spectroscopy , 2007 .

[19]  J. Jur,et al.  Encapsulation and Chemical Resistance of Electrospun Nylon Nanofibers Coated Using Integrated Atomic and Molecular Layer Deposition , 2011 .

[20]  S. Jo,et al.  Properties of carbon nanofibers prepared from electrospun polyimide , 2005 .

[21]  E. Peled,et al.  A Study of Highly Oriented Pyrolytic Graphite as a Model for the Graphite Anode in Li‐Ion Batteries , 1999 .

[22]  Sehee Lee,et al.  Ultrathin Direct Atomic Layer Deposition on Composite Electrodes for Highly Durable and Safe Li‐Ion Batteries , 2010, Advanced materials.

[23]  J. Dahn,et al.  Reduction of the Irreversible Capacity in Hard‐Carbon Anode Materials Prepared from Sucrose for Li‐Ion Batteries , 1998 .

[24]  Un Ho Jung,et al.  Effect of Li2CO3 additive on gas generation in lithium-ion batteries , 2002 .

[25]  Darrell H. Reneker,et al.  Effects of parameters on nanofiber diameter determined from electrospinning model , 2007 .

[26]  Martin Winter,et al.  Inorganic film-forming electrolyte additives improving the cycling behaviour of metallic lithium electrodes and the self-discharge of carbon—lithium electrodes , 1993 .

[27]  Xiangwu Zhang,et al.  Manganese oxide nanoparticle-loaded porous carbon nanofibers as anode materials for high-performance lithium-ion batteries , 2009 .

[28]  Ying Wang,et al.  Developments in Nanostructured Cathode Materials for High‐Performance Lithium‐Ion Batteries , 2008 .

[29]  G. Parsons,et al.  “Zincone” Zinc Oxide−Organic Hybrid Polymer Thin Films Formed by Molecular Layer Deposition , 2009 .

[30]  Emanuel Peled,et al.  Film forming reaction at the lithium/electrolyte interface , 1983 .

[31]  M. Ritala,et al.  Development of crystallinity and morphology in hafnium dioxide thin films grown by atomic layer epitaxy , 1994 .

[32]  S. George,et al.  Surface chemistry for molecular layer deposition of organic and hybrid organic-inorganic polymers. , 2009, Accounts of chemical research.

[33]  H. Takezoe,et al.  Liquid crystalline corannulene responsive to electric field. , 2009, Journal of the American Chemical Society.

[34]  E. Peled,et al.  Improved Graphite Anode for Lithium‐Ion Batteries Chemically Bonded Solid Electrolyte Interface and Nanochannel Formation , 1996 .

[35]  Wataru Sotoyama,et al.  Polymer films formed with monolayer growth steps by molecular layer deposition , 1991 .

[36]  D. Aurbach,et al.  Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems , 1997 .

[37]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[38]  Seung M. Oh,et al.  Surface modification of graphite by coke coating for reduction of initial irreversible capacity in lithium secondary batteries , 2001 .

[39]  J. Rouzaud,et al.  Correlation of the irreversible lithium capacity with the active surface area of modified carbons , 2005 .

[40]  Diana Golodnitsky,et al.  The sei model—application to lithium-polymer electrolyte batteries , 1995 .

[41]  Yen Wei,et al.  Preparation and characterization of a PAN nanofibre containing Ag nanoparticles via electrospinning , 2003 .

[42]  Y. Rosenberg,et al.  Characterization of modified NG7 graphite as an improved anode for lithium-ion batteries , 1997 .

[43]  G. Parsons,et al.  Conformal organic-inorganic hybrid network polymer thin films by molecular layer deposition using trimethylaluminum and glycidol. , 2011, The journal of physical chemistry. B.

[44]  J. Jur,et al.  Atomic layer deposition and abrupt wetting transitions on nonwoven polypropylene and woven cotton fabrics. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[45]  D. Aurbach,et al.  On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries , 2002 .

[46]  Steven M. George,et al.  Enhanced Stability of LiCoO2 Cathodes in Lithium-Ion Batteries Using Surface Modification by Atomic Layer Deposition , 2010 .

[47]  A. Andrady Science and technology of polymer nanofibers , 2008 .

[48]  Yong Jung Kim,et al.  Fabrication of Electrospinning‐Derived Carbon Nanofiber Webs for the Anode Material of Lithium‐Ion Secondary Batteries , 2006 .

[49]  F. Agend,et al.  Fabrication and electrical characterization of electrospun polyacrylonitrile‐derived carbon nanofibers , 2007 .

[50]  S. Bent,et al.  Molecular layer deposition of functional thin films for advanced lithographic patterning. , 2011, ACS applied materials & interfaces.

[51]  J. Lannutti,et al.  Electrospinning for tissue engineering scaffolds , 2007 .

[52]  E. R. Smith,et al.  ALD of SiO2 at Room Temperature Using TEOS and H 2 O with NH 3 as the Catalyst , 2004 .

[53]  Andrew J. Medford,et al.  Porous carbon nanofibers loaded with manganese oxide particles: Formation mechanism and electrochemical performance as energy-storage materials , 2009 .

[54]  B. Steele,et al.  Materials for fuel-cell technologies , 2001, Nature.

[55]  K. Zaghib,et al.  Effect of Graphite Particle Size on Irreversible Capacity Loss , 2000 .

[56]  Hongyu Wang,et al.  Additives-containing functional electrolytes for suppressing electrolyte decomposition in lithium-ion batteries , 2004 .