Temperature-dependent behavioral model of pixels in active-matrix liquid crystal displays with fringe-field switching mode

Abstract. This paper proposes a temperature-dependent behavioral circuit model to predict the optical characteristics of an active-matrix liquid crystal display with a fringe-field switching (FFS) mode. The optical responses of liquid crystal displays (LCDs) are strongly affected by their ambient temperature. We optimized the time-constant parameters that describe the movement of liquid crystal molecules so that simulated optical responses of FFS LCD provide the best fit to the measured responses over the temperature range of 0 to 50°C. It is found that these time-constant parameters have a linear relationship with the ambient temperature, which enables the prediction of optical responses at any given temperature. The simulation results of the transient responses show an excellent match with the measured results regardless of the ambient temperature.

[1]  Jong-Man Kim,et al.  Precise prediction of optical responses of all types of liquid crystal displays by behavioral models , 2013 .

[2]  Herbert De Smet,et al.  Electrical model of a liquid crystal pixel with dynamic, voltage history-dependent capacitance value , 2004 .

[3]  K. Ishihara,et al.  Macro-modeling of liquid crystal cell with VerilogA , 2007, 2007 IEEE International Behavioral Modeling and Simulation Workshop.

[4]  Jong-Man Kim,et al.  A Behavioral Circuit Model of Active-Matrix Liquid Crystal Displays for Optical Response Simulation , 2012, IEEE Transactions on Electron Devices.

[5]  Seung-Woo Lee,et al.  Intelligent Liquid Crystal Display (i-LCD) for Next Generation Television Applications , 2007, IEEE Transactions on Consumer Electronics.

[6]  Minkoo Kim,et al.  Overdrive technology compensating for ambient temperature , 2015 .

[7]  Seung-Hyuck Lee,et al.  Behavioral Model of Patterned Vertical Alignment Pixel in Active-Matrix Liquid Crystal Displays , 2014, IEEE Transactions on Electron Devices.

[8]  A. P. Mammana,et al.  Electrical modeling of liquid crystal displays-LCDs , 2006, IEEE Transactions on Dielectrics and Electrical Insulation.

[9]  Jong-Man Kim,et al.  Behavioral Circuit Model of Active-Matrix Liquid Crystal Display With Charge-Shared Pixel Structure , 2013, IEEE Transactions on Electron Devices.

[10]  Minkoo Kim,et al.  A liquid crystal display with consistent moving image quality regardless of viewing angles , 2014 .

[11]  Dong-Hwan Jeon,et al.  P-101: Temperature-Dependent Behavioral Model of Twisted Nematic Pixel in Active-Matrix Liquid Crystal Displays , 2015 .

[12]  Lee-Sup Kim,et al.  Simultaneous intermediate-view interpolation and multiplexing algorithm for a fast lenticular display , 2007 .

[13]  Seung-Woo Lee,et al.  Liquid crystal displays with temperature-independent characteristics , 2012 .

[14]  Seung-Woo Lee,et al.  Common voltage control technology for highly reliable active matrix liquid crystal displays , 2008 .

[15]  Brian K. Jones,et al.  Real-time, full-resolution liquid crystal-based stereoscopic display , 2008 .