Scalable Integration of Indium Zinc Oxide/Photosensitive‐Nanowire Composite Thin‐Film Transistors for Transparent Multicolor Photodetectors Array

By incorporating crystalline photosensitive nanowires (NWs), an amorphous InZnO (a-IZO) thin film is designed to be sensitive to the primary colors of light via a facile sol-gel approach. The mobility is also improved. The composite devices leverage the advantages of the transparency of a-IZO with the photosensitivity of CdS NWs.

[1]  Po-Chiang Chen,et al.  Transparent active matrix organic light-emitting diode displays driven by nanowire transistor circuitry. , 2008, Nano letters.

[2]  Feng Wang,et al.  Gate-Variable Optical Transitions in Graphene , 2008, Science.

[3]  Ting‐Chang Chang,et al.  Investigating the degradation behavior caused by charge trapping effect under DC and AC gate-bias stress for InGaZnO thin film transistor , 2011 .

[4]  H. Ohta,et al.  Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor , 2003, Science.

[5]  Arokia Nathan,et al.  High performance nanocomposite thin film transistors with bilayer carbon nanotube-polythiophene active channel by ink-jet printing , 2009 .

[6]  P. Kim,et al.  Dirac charge dynamics in graphene by infrared spectroscopy , 2008, 0807.3780.

[7]  Yong Ding,et al.  Piezo-phototronic effect enhanced visible and ultraviolet photodetection using a ZnO-CdS core-shell micro/nanowire. , 2012, ACS nano.

[8]  Hyuck-In Kwon,et al.  Bias-stress-induced stretched-exponential time dependence of threshold voltage shift in InGaZnO thin film transistors , 2008 .

[9]  Xiangfeng Duan,et al.  High-performance thin-film transistors using semiconductor nanowires and nanoribbons , 2003, Nature.

[10]  S. T. Lee,et al.  Photoconductive characteristics of single-crystal CdS nanoribbons. , 2006, Nano letters.

[11]  Yu-Jen Chang,et al.  A General Route to Printable High‐Mobility Transparent Amorphous Oxide Semiconductors , 2007 .

[12]  M. Liao,et al.  Persistent positive and transient absolute negative photoconductivity observed in diamond photodetectors , 2008 .

[13]  T. Alford,et al.  Highest transmittance and high-mobility amorphous indium gallium zinc oxide films on flexible substrate by room-temperature deposition and post-deposition anneals , 2011 .

[14]  X. Duan,et al.  Rational design of amorphous indium zinc oxide/carbon nanotube hybrid film for unique performance transistors. , 2012, Nano letters.

[15]  H. Meng,et al.  Achieving High Field‐Effect Mobility in Amorphous Indium‐Gallium‐Zinc Oxide by Capping a Strong Reduction Layer , 2012, Advanced materials.

[16]  S. Sung,et al.  Effect of Zr Addition on Sol-Gel Processed InZrZnO Thin-Film Transistor , 2012 .

[17]  Caofeng Pan,et al.  Piezo‐Phototronic Effect of CdSe Nanowires , 2012, Advanced materials.

[18]  Performance of carbon nanotube-dispersed thin-film transistors , 2006 .

[19]  E. Fortunato,et al.  Fully Transparent ZnO Thin‐Film Transistor Produced at Room Temperature , 2005 .

[20]  Zhiyong Fan,et al.  Large-scale, heterogeneous integration of nanowire arrays for image sensor circuitry , 2008, Proceedings of the National Academy of Sciences.

[21]  A. Nascetti,et al.  Amorphous Silicon Sensors for Single and Multicolor Detection of Biomolecules , 2007, IEEE Sensors Journal.

[22]  Paul H. Holloway,et al.  Enhancement-mode thin-film field-effect transistor using phosphorus-doped (Zn,Mg)O channel , 2004 .

[23]  Yeon-Gon Mo,et al.  High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel , 2007 .

[24]  F. Xia,et al.  Ultrafast graphene photodetector , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[25]  S. J. Pearton,et al.  High mobility InGaZnO4 thin-film transistors on paper , 2009 .

[26]  J. Moon,et al.  High-Detectivity Polymer Photodetectors with Spectral Response from 300 nm to 1450 nm , 2009, Science.

[27]  K. Chiba,et al.  Enhanced bending stability of carbon-nanotube-reinforced indium tin oxide films on flexible plastic substrates , 2008 .

[28]  U-In Chung,et al.  Persistent photoconductivity in Hf–In–Zn–O thin film transistors , 2010 .

[29]  M. Burghard,et al.  Efficient charge extraction out of nanoscale Schottky contacts to CdS nanowires. , 2012, Nano letters.

[30]  H. Ohta,et al.  Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors , 2004, Nature.

[31]  Jin-seong Park,et al.  Review of recent developments in amorphous oxide semiconductor thin-film transistor devices , 2012 .

[32]  H. Sirringhaus,et al.  Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a ‘sol–gel on chip’ process. , 2011, Nature materials.

[33]  Kinam Kim,et al.  Gated three-terminal device architecture to eliminate persistent photoconductivity in oxide semiconductor photosensor arrays. , 2012, Nature materials.

[34]  Changjung Kim,et al.  Highly Stable Transparent Amorphous Oxide Semiconductor Thin‐Film Transistors Having Double‐Stacked Active Layers , 2010, Advanced materials.

[35]  T. Kamiya,et al.  High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering , 2006 .

[36]  John A. Rogers,et al.  Inorganic Semiconductors for Flexible Electronics , 2007 .