Thermionic Energy Conversion in the Twenty-first Century: Advances and Opportunities for Space and Terrestrial Applications
暂无分享,去创建一个
Alireza Nojeh | David B. Go | John R. Haase | Jeffrey George | Jochen Mannhart | Robin Wanke | Robert Nemanich | D. Go | R. Nemanich | J. Mannhart | A. Nojeh | J. Haase | J. George | R. Wanke
[1] W. Schlichter,et al. Die spontane Elektronenemission glhender Metalle und das glhelektrische Element , 1915 .
[2] S. Liang,et al. Electron Thermionic Emission from Graphene and a Thermionic Energy Converter , 2015, 1501.05056.
[3] R. Nemanich,et al. Thermionic Electron Emission from Nitrogen Doped Homoepitaxial Diamond with Respect to Energy Conversion (特集 環境) -- (省エネ・熱マネ) , 2010 .
[4] G. O. Fitzpatrick,et al. Updated perspective on the potential for thermionic conversion to meet 21st Century energy needs , 1997, IECEC-97 Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference (Cat. No.97CH6203).
[5] Describing and Correlating the Performance of the Thermionic Converter: A Historical Perspective , 2010, IEEE Transactions on Plasma Science.
[6] A. Kribus,et al. High‐Temperature Latent‐Heat Energy Storage Concept Based on Thermoelectronic Energy Conversion , 2017 .
[7] C. D. Child,et al. Discharge From Hot Cao , 1911 .
[8] W. Raja,et al. Photon-Enhanced Thermionic Emission Final report , 2015 .
[9] R. Howe,et al. ENCAPSULATED THERMIONIC ENERGY CONVERTER WITH STIFFENED SUSPENSION , 2012 .
[10] R. Nemanich,et al. Thermally enhanced photoinduced electron emission from nitrogen-doped diamond films on silicon substrates , 2014 .
[11] R. E. Thomas,et al. Investigation of scandate cathodes: emission, fabrication, and activation processes , 1989 .
[12] Zhang,et al. Negative-electron-affinity effects on the diamond (100) surface. , 1994, Physical review. B, Condensed matter.
[13] Karl H. Schoenbach,et al. Microplasmas and applications , 2006 .
[14] G. A. Shafeev,et al. Nano-textured W shows improvement of thermionic emission properties , 2011, Applied Physics A.
[15] R. Davis,et al. Negative electron affinity surfaces of aluminum nitride and diamond , 1996 .
[16] B. Nichols,et al. Thermionic Emission from Molybdenum in Vapors of Cesium and Cesium Fluoride , 1962 .
[17] Jae Hyung Lee,et al. Optimal emitter-collector gap for thermionic energy converters , 2012 .
[18] Gary L. Doll,et al. Observation of a negative electron affinity for boron nitride , 1995 .
[19] A. Khoshaman,et al. Thermionics, Thermoelectrics, and Nanotechnology: New Possibilities for Old Ideas , 2014, IEEE Nanotechnology Magazine.
[20] K. Haenen,et al. Thermionic electron emission from low work-function phosphorus doped diamond films , 2009 .
[21] R. Dimitrov,et al. DX-behavior of Si in AlN , 2000 .
[22] C. Spindt,et al. Physical properties of thin‐film field emission cathodes with molybdenum cones , 1976 .
[23] T. Ono,et al. Thermal investigation of a micro-gap thermionic power generator , 2014 .
[24] Noel C. MacDonald,et al. Selective chemical vapor deposition of tungsten for microelectromechanical structures , 1989 .
[25] K. Haenen,et al. Enhanced thermionic energy conversion and thermionic emission from doped diamond films through methane exposure , 2011 .
[26] L. Schlapbach,et al. Electron affinity and work function of differently oriented and doped diamond surfaces determined by photoelectron spectroscopy , 1998 .
[27] G. N. Hatsopoulos,et al. Thermionic energy conversion. Volume II. Theory, technology, and application , 1979 .
[28] R. Jones,et al. Unexpected change in the electron affinity of diamond caused by the ultra-thin transition metal oxide films , 2014 .
[29] J. Mannhart,et al. Thermoelectronic energy conversion: Concepts and materials , 2017 .
[30] The effect of Schottky barrier lowering and nonplanar emitter geometry on the performance of a thermionic energy converter , 2006 .
[31] T. Geballe,et al. The thermionic energy converter as a topping cycle for more efficient heat engines—new triode designs with a longitudinal magnetic field , 2005 .
[32] N. Rasor. Thermionic energy conversion plasmas , 1991 .
[33] R. Howe,et al. Photon-enhanced thermionic emission from heterostructures with low interface recombination , 2013, Nature Communications.
[34] T. Sugino,et al. Electron field emission from boron-nitride nanofilms , 2002 .
[35] R. Jenkins,et al. A review of thermionic cathodes , 1969 .
[36] Piero Pianetta,et al. Photon-enhanced thermionic emission for solar concentrator systems. , 2010, Nature materials.
[37] Hongyuan Yuan,et al. Microbead-separated thermionic energy converter with enhanced emission current. , 2013, Physical chemistry chemical physics : PCCP.
[38] J. Mannhart,et al. Magnetic-field-free thermoelectronic power conversion based on graphene and related two-dimensional materials , 2016 .
[39] R. Howe,et al. Microfabricated Thermally Isolated Low Work-Function Emitter , 2014, Journal of Microelectromechanical Systems.
[40] D. Go,et al. Microscale gas breakdown: ion-enhanced field emission and the modified Paschen’s curve , 2014 .
[41] G. Sawatzky,et al. Photon-impenetrable, electron-permeable: the carbon nanotube forest as a medium for multiphoton thermal-photoemission. , 2015, ACS nano.
[42] J. Ristein,et al. Electronic properties of diamond surfaces — blessing or curse for devices? , 2000 .
[43] V. S. Fomenko,et al. Handbook of Thermionic Properties , 1966 .
[44] Steven M. Benke,et al. Operational testing and thermal modeling of a TOPAZ‐II single‐cell thermionic fuel element test stand , 1994 .
[45] M. Howell,et al. Influence of hydrogen on the thermionic electron emission from nitrogen-incorporated polycrystalline diamond films , 2012 .
[46] V. C. Wilson. Conversion of Heat to Electricity by Thermionic Emission , 1959 .
[47] Alireza Nojeh,et al. Nanostructured Thermionics for Conversion of Light to Electricity: Simultaneous Extraction of Device Parameters , 2015, IEEE Transactions on Nanotechnology.
[48] R. Howe,et al. Microfabricated silicon carbide thermionic energy converter for solar electricity generation , 2012, 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS).
[49] Olukunle C. Olawole,et al. Modeling thermionic emission from carbon nanotubes with modified Richardson-Dushman equation , 2016, NanoScience + Engineering.
[50] G. M. Gryaznov. 30th anniversary of the startup of Topaz—The first thermionic nuclear reactor in the world , 2000 .
[51] Joshua R. Smith,et al. Thermionic and field electron emission devices from diamond and carbon nanostructures , 2010, 2010 3rd International Nanoelectronics Conference (INEC).
[52] Work Function of the (110) Face of Tantalum in a Cesium Vapor , 1964 .
[53] T. Fisher,et al. Thermionic and Photo-Excited Electron Emission for Energy-Conversion Processes , 2014, Front. Energy Res..
[54] Kazuyuki Tohji,et al. Field Emission Patterns from Single-Walled Carbon Nanotubes , 1997 .
[55] T. H. Geballe,et al. Highly-efficient thermoelectronic conversion of solar energy and heat into electric power , 2013, 1301.3505.
[56] Khairudin Mohamed,et al. Review on Thermionic Energy Converters , 2016, IEEE Transactions on Electron Devices.
[57] Nicholas A. Melosh,et al. Electron-emission materials: Advances, applications, and models , 2017 .
[58] George N. Hatsopoulos,et al. Thermionic energy conversion , 1966 .
[59] Steven F. Adams,et al. Solar Thermionic Space Power Technology Testing: A Historical Perspective , 2006 .
[60] S. H. Lam. Thermionic energy conversion research analysis. Annual progress report. [Study on plasma arc-drop] , 1976 .
[61] W. Schottky. Über den Austritt von Elektronen aus Glühdrähten bei verzögernden Potentialen , 1914 .
[62] Alireza Nojeh,et al. Solar electron source and thermionic solar cell , 2012 .
[63] Irving Langmuir,et al. The Effect of Space Charge and Residual Gases on Thermionic Currents in High Vacuum , 1913 .
[64] Oliver Ambacher,et al. Electron affinity of AlxGa1−xN(0001) surfaces , 2001 .
[65] W. Milne,et al. Porous boron-doped diamond/carbon nanotube electrodes. , 2014, ACS applied materials & interfaces.
[66] M. V. Moghaddam,et al. “Heat trap”: Light-induced localized heating and thermionic electron emission from carbon nanotube arrays , 2011 .
[67] J. Smith,et al. Increasing the efficiency of a thermionic engine using a negative electron affinity collector , 2013, 1304.3060.