Thermionic Energy Conversion in the Twenty-first Century: Advances and Opportunities for Space and Terrestrial Applications

Thermionic energy conversion is the direct conversion of heat into electricity by the mechanism of thermionic emission, the spontaneous ejection of hot electrons from a surface. Although the physical mechanism has been known for over a century, it has yet to be consistently realized in a manner practical for large-scale deployment. This perspective article provides an assessment of the potential of thermionic energy conversion systems for space and terrestrial applications in the 21st century, overviewing recent advances in the field and identifying key research challenges. Recent developments as well as persisting research needs in materials, device design, fundamental understanding, and testing and validation are discussed.

[1]  W. Schlichter,et al.  Die spontane Elektronenemission glhender Metalle und das glhelektrische Element , 1915 .

[2]  S. Liang,et al.  Electron Thermionic Emission from Graphene and a Thermionic Energy Converter , 2015, 1501.05056.

[3]  R. Nemanich,et al.  Thermionic Electron Emission from Nitrogen Doped Homoepitaxial Diamond with Respect to Energy Conversion (特集 環境) -- (省エネ・熱マネ) , 2010 .

[4]  G. O. Fitzpatrick,et al.  Updated perspective on the potential for thermionic conversion to meet 21st Century energy needs , 1997, IECEC-97 Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference (Cat. No.97CH6203).

[5]  Describing and Correlating the Performance of the Thermionic Converter: A Historical Perspective , 2010, IEEE Transactions on Plasma Science.

[6]  A. Kribus,et al.  High‐Temperature Latent‐Heat Energy Storage Concept Based on Thermoelectronic Energy Conversion , 2017 .

[7]  C. D. Child,et al.  Discharge From Hot Cao , 1911 .

[8]  W. Raja,et al.  Photon-Enhanced Thermionic Emission Final report , 2015 .

[9]  R. Howe,et al.  ENCAPSULATED THERMIONIC ENERGY CONVERTER WITH STIFFENED SUSPENSION , 2012 .

[10]  R. Nemanich,et al.  Thermally enhanced photoinduced electron emission from nitrogen-doped diamond films on silicon substrates , 2014 .

[11]  R. E. Thomas,et al.  Investigation of scandate cathodes: emission, fabrication, and activation processes , 1989 .

[12]  Zhang,et al.  Negative-electron-affinity effects on the diamond (100) surface. , 1994, Physical review. B, Condensed matter.

[13]  Karl H. Schoenbach,et al.  Microplasmas and applications , 2006 .

[14]  G. A. Shafeev,et al.  Nano-textured W shows improvement of thermionic emission properties , 2011, Applied Physics A.

[15]  R. Davis,et al.  Negative electron affinity surfaces of aluminum nitride and diamond , 1996 .

[16]  B. Nichols,et al.  Thermionic Emission from Molybdenum in Vapors of Cesium and Cesium Fluoride , 1962 .

[17]  Jae Hyung Lee,et al.  Optimal emitter-collector gap for thermionic energy converters , 2012 .

[18]  Gary L. Doll,et al.  Observation of a negative electron affinity for boron nitride , 1995 .

[19]  A. Khoshaman,et al.  Thermionics, Thermoelectrics, and Nanotechnology: New Possibilities for Old Ideas , 2014, IEEE Nanotechnology Magazine.

[20]  K. Haenen,et al.  Thermionic electron emission from low work-function phosphorus doped diamond films , 2009 .

[21]  R. Dimitrov,et al.  DX-behavior of Si in AlN , 2000 .

[22]  C. Spindt,et al.  Physical properties of thin‐film field emission cathodes with molybdenum cones , 1976 .

[23]  T. Ono,et al.  Thermal investigation of a micro-gap thermionic power generator , 2014 .

[24]  Noel C. MacDonald,et al.  Selective chemical vapor deposition of tungsten for microelectromechanical structures , 1989 .

[25]  K. Haenen,et al.  Enhanced thermionic energy conversion and thermionic emission from doped diamond films through methane exposure , 2011 .

[26]  L. Schlapbach,et al.  Electron affinity and work function of differently oriented and doped diamond surfaces determined by photoelectron spectroscopy , 1998 .

[27]  G. N. Hatsopoulos,et al.  Thermionic energy conversion. Volume II. Theory, technology, and application , 1979 .

[28]  R. Jones,et al.  Unexpected change in the electron affinity of diamond caused by the ultra-thin transition metal oxide films , 2014 .

[29]  J. Mannhart,et al.  Thermoelectronic energy conversion: Concepts and materials , 2017 .

[30]  The effect of Schottky barrier lowering and nonplanar emitter geometry on the performance of a thermionic energy converter , 2006 .

[31]  T. Geballe,et al.  The thermionic energy converter as a topping cycle for more efficient heat engines—new triode designs with a longitudinal magnetic field , 2005 .

[32]  N. Rasor Thermionic energy conversion plasmas , 1991 .

[33]  R. Howe,et al.  Photon-enhanced thermionic emission from heterostructures with low interface recombination , 2013, Nature Communications.

[34]  T. Sugino,et al.  Electron field emission from boron-nitride nanofilms , 2002 .

[35]  R. Jenkins,et al.  A review of thermionic cathodes , 1969 .

[36]  Piero Pianetta,et al.  Photon-enhanced thermionic emission for solar concentrator systems. , 2010, Nature materials.

[37]  Hongyuan Yuan,et al.  Microbead-separated thermionic energy converter with enhanced emission current. , 2013, Physical chemistry chemical physics : PCCP.

[38]  J. Mannhart,et al.  Magnetic-field-free thermoelectronic power conversion based on graphene and related two-dimensional materials , 2016 .

[39]  R. Howe,et al.  Microfabricated Thermally Isolated Low Work-Function Emitter , 2014, Journal of Microelectromechanical Systems.

[40]  D. Go,et al.  Microscale gas breakdown: ion-enhanced field emission and the modified Paschen’s curve , 2014 .

[41]  G. Sawatzky,et al.  Photon-impenetrable, electron-permeable: the carbon nanotube forest as a medium for multiphoton thermal-photoemission. , 2015, ACS nano.

[42]  J. Ristein,et al.  Electronic properties of diamond surfaces — blessing or curse for devices? , 2000 .

[43]  V. S. Fomenko,et al.  Handbook of Thermionic Properties , 1966 .

[44]  Steven M. Benke,et al.  Operational testing and thermal modeling of a TOPAZ‐II single‐cell thermionic fuel element test stand , 1994 .

[45]  M. Howell,et al.  Influence of hydrogen on the thermionic electron emission from nitrogen-incorporated polycrystalline diamond films , 2012 .

[46]  V. C. Wilson Conversion of Heat to Electricity by Thermionic Emission , 1959 .

[47]  Alireza Nojeh,et al.  Nanostructured Thermionics for Conversion of Light to Electricity: Simultaneous Extraction of Device Parameters , 2015, IEEE Transactions on Nanotechnology.

[48]  R. Howe,et al.  Microfabricated silicon carbide thermionic energy converter for solar electricity generation , 2012, 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS).

[49]  Olukunle C. Olawole,et al.  Modeling thermionic emission from carbon nanotubes with modified Richardson-Dushman equation , 2016, NanoScience + Engineering.

[50]  G. M. Gryaznov 30th anniversary of the startup of Topaz—The first thermionic nuclear reactor in the world , 2000 .

[51]  Joshua R. Smith,et al.  Thermionic and field electron emission devices from diamond and carbon nanostructures , 2010, 2010 3rd International Nanoelectronics Conference (INEC).

[52]  Work Function of the (110) Face of Tantalum in a Cesium Vapor , 1964 .

[53]  T. Fisher,et al.  Thermionic and Photo-Excited Electron Emission for Energy-Conversion Processes , 2014, Front. Energy Res..

[54]  Kazuyuki Tohji,et al.  Field Emission Patterns from Single-Walled Carbon Nanotubes , 1997 .

[55]  T. H. Geballe,et al.  Highly-efficient thermoelectronic conversion of solar energy and heat into electric power , 2013, 1301.3505.

[56]  Khairudin Mohamed,et al.  Review on Thermionic Energy Converters , 2016, IEEE Transactions on Electron Devices.

[57]  Nicholas A. Melosh,et al.  Electron-emission materials: Advances, applications, and models , 2017 .

[58]  George N. Hatsopoulos,et al.  Thermionic energy conversion , 1966 .

[59]  Steven F. Adams,et al.  Solar Thermionic Space Power Technology Testing: A Historical Perspective , 2006 .

[60]  S. H. Lam Thermionic energy conversion research analysis. Annual progress report. [Study on plasma arc-drop] , 1976 .

[61]  W. Schottky Über den Austritt von Elektronen aus Glühdrähten bei verzögernden Potentialen , 1914 .

[62]  Alireza Nojeh,et al.  Solar electron source and thermionic solar cell , 2012 .

[63]  Irving Langmuir,et al.  The Effect of Space Charge and Residual Gases on Thermionic Currents in High Vacuum , 1913 .

[64]  Oliver Ambacher,et al.  Electron affinity of AlxGa1−xN(0001) surfaces , 2001 .

[65]  W. Milne,et al.  Porous boron-doped diamond/carbon nanotube electrodes. , 2014, ACS applied materials & interfaces.

[66]  M. V. Moghaddam,et al.  “Heat trap”: Light-induced localized heating and thermionic electron emission from carbon nanotube arrays , 2011 .

[67]  J. Smith,et al.  Increasing the efficiency of a thermionic engine using a negative electron affinity collector , 2013, 1304.3060.