Optimal dividend policies with random profitability

We study an optimal dividend problem under a bankruptcy constraint. Firms face a trade‐off between potential bankruptcy and extraction of profits. In contrast to previous works, general cash flow drifts, including Ornstein–Uhlenbeck and CIR processes, are considered. We provide rigorous proofs of continuity of the value function, whence dynamic programming, as well as comparison between discontinuous sub‐ and supersolutions of the Hamilton–Jacobi–Bellman equation, and we provide an efficient and convergent numerical scheme for finding the solution. The value function is given by a nonlinear partial differential equation (PDE) with a gradient constraint from below in one direction. We find that the optimal strategy is both a barrier and a band strategy and that it includes voluntary liquidation in parts of the state space. Finally, we present and numerically study extensions of the model, including equity issuance and gambling for resurrection.

[1]  Jean-Charles Rochet,et al.  Free Cash Flow, Issuance Costs, and Stock Prices , 2011 .

[2]  R. Frock Changing How the World Does Business: Fedex's Incredible Journey to Success - The Inside Story , 2006 .

[3]  Salvatore Federico,et al.  Optimal Boundary Surface for Irreversible Investment with Stochastic Costs , 2014, Math. Oper. Res..

[4]  M. Quenez,et al.  Optimal stopping in a general framework , 2010, 1009.3862.

[5]  R. Hubbard,et al.  Corporate Financial Policy, Taxation, and Macroeconomic Risk , 1991 .

[6]  P. Grabner,et al.  Number Theory – Diophantine Problems, Uniform Distribution and Applications , 2017 .

[7]  A. Shiryaev,et al.  Optimization of the flow of dividends , 1995 .

[8]  M. James Controlled markov processes and viscosity solutions , 1994 .

[9]  I. Kolodner Free boundary problem for the heat equation with applications to problems of change of phase. I. General method of solution , 1956 .

[10]  H. Gerber,et al.  Optimal Dividends In An Ornstein-Uhlenbeck Type Model With Credit And Debit Interest , 2006 .

[11]  Xiaolu Tan,et al.  Capacities, Measurable Selection and Dynamic Programming Part I: Abstract Framework , 2013 .

[12]  Anna Lisa Amadori,et al.  Uniqueness and comparison properties of the viscosity solution to some singular HJB equations , 2007 .

[13]  Ulrich G. Haussmann,et al.  The Free Boundary of the Monotone Follower , 1994 .

[14]  F. Zapatero,et al.  OPTIMAL DIVIDEND POLICY WITH MEAN‐REVERTING CASH RESERVOIR , 2007 .

[15]  Giorgio Ferrari,et al.  On the Optimal Management of Public Debt: a Singular Stochastic Control Problem , 2016, SIAM J. Control. Optim..

[16]  Zhengjun Jiang,et al.  Optimal dividend distribution under Markov regime switching , 2008, Finance Stochastics.

[17]  Bruno Bouchard,et al.  Weak Dynamic Programming Principle for Viscosity Solutions , 2011, SIAM J. Control. Optim..

[18]  H. Albrecher,et al.  Risk Theory with Affine Dividend Payment Strategies , 2017 .

[19]  H. Soner,et al.  A free boundary problem related to singular stochastic control: the parabolic case , 1991 .

[20]  Santiago Moreno-Bromberg,et al.  A Non-stationary Model of Dividend Distribution in a Stochastic Interest-Rate Setting , 2014 .

[21]  S. Myers Determinants of corporate borrowing , 1977 .

[22]  M. Quenez,et al.  Optimal stopping time problem in a general framework , 2012 .

[23]  E. Fama,et al.  Forecasting Profitability and Earnings , 1999 .

[24]  D. P. Gaver,et al.  Optimal Consumption for General Diffusions with Absorbing and Reflecting Barriers , 1984 .

[25]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[26]  Benjamin Avanzi,et al.  On a Mean Reverting Dividend Strategy with Brownian Motion , 2009 .

[27]  Larry A. Shepp,et al.  Risk vs. profit potential: A model for corporate strategy , 1996 .

[28]  E. Prescott,et al.  Investment Under Uncertainty , 1971 .

[29]  E. Morellec,et al.  Capital Structure, Credit Risk, and Macroeconomic Conditions , 2004 .

[30]  Xiaolu Tan,et al.  Capacities, Measurable Selection and Dynamic Programming Part II: Application in Stochastic Control Problems , 2013, 1310.3364.

[31]  Giorgio Ferrari,et al.  On an integral equation for the free-boundary of stochastic, irreversible investment problems , 2012, 1211.0412.

[32]  G. Barles,et al.  Convergence of approximation schemes for fully nonlinear second order equations , 1990, 29th IEEE Conference on Decision and Control.

[33]  E. Morellec,et al.  Capital Supply Uncertainty, Cash Holdings, and Investment , 2014 .

[34]  D. Iglehart Limiting diffusion approximations for the many server queue and the repairman problem , 1965, Journal of Applied Probability.

[35]  Steven E. Shreve,et al.  A free boundary problem related to singular stochastic control , 1990 .

[36]  Ronald W. Anderson,et al.  Corporate liquidity and capital structure , 2012 .

[37]  Hansjörg Albrecher,et al.  Optimality results for dividend problems in insurance , 2009 .

[38]  W. Fleming,et al.  Controlled Markov processes and viscosity solutions , 1992 .

[39]  Halil Mete Soner,et al.  Optimal Consumption and Investment with Fixed and Proportional Transaction Costs , 2016, SIAM J. Control. Optim..

[40]  Hui Chen,et al.  Market Timing, Investment, and Risk Management , 2011 .

[41]  Optimal Dividend Policy with Random Interest Rates , 2014 .

[42]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[43]  Bounding the Maximal Height of a Diffusion by the Time Elapsed , 2001 .

[44]  Marko Terviö,et al.  Exit Options and Dividend Policy Under Liquidity Constraints , 2009 .

[45]  Zhibin Liang,et al.  Dividends and reinsurance under a penalty for ruin , 2012 .

[46]  Hans-Ulrich Gerber,et al.  Entscheidungskriterien für den zusammengesetzten Poisson-Prozess , 1969 .

[47]  H. Soner,et al.  Regularity of the value function for a two-dimensional singular stochastic control problem , 1989 .