Multiple-symbol trellis-coded modulation applied to noncoherent continuous-phase frequency shift keying

This paper considers a maximum-likelihood (ML) noncoherent detection scheme for multiple full response continuous-phase frequency shift keying (CPFSK) waveforms and introduces a trellis-coded modulation (TCM) scheme for this noncoherent modulation. By utilizing a Gaussian approximation for Rician random variables, we express the pairwise error probability as a function of the equivalent normalized squared distance (ENSD). ENSD plays the same role as normalized squared Euclidean distance when evaluating error probability performance for coherent detection. We derive an analytical approximation on the bit-error probability by employing ENSD for both the coded system and the uncoded system. For the uncoded system we show that the bit-error probability of noncoherent detection approaches that of coherent symbol-by-symbol detection in the limit as the multiplicity of the symbol goes to infinity for large signal-to-noise ratio (SNR), We determine specific optimal trellis encoders for binary and 4-ary CPFSK with modulation index 1/2 and 1/4, respectively, by application of Ungerboeck's (1982) set partitioning approach.

[1]  S. L. Belousov TABLES OF FUNCTIONS , 1962 .

[2]  Dariush Divsalar,et al.  Multiple symbol trellis coding of CPFSK , 1996, IEEE Trans. Commun..

[3]  Lee-Fang Wei,et al.  Trellis-coded modulation with multidimensional constellations , 1987, IEEE Trans. Inf. Theory.

[4]  T. Aulin,et al.  Continuous Phase Modulation - Part I: Full Response Signaling , 1981, IEEE Transactions on Communications.

[5]  Dariush Divsalar,et al.  Introduction to Trellis-Coded Modulation With Applications , 1991 .

[6]  David Lee,et al.  Conformance testing of protocols specified as communicating finite state machines-a guided random walk based approach , 1996, IEEE Trans. Commun..

[7]  Dariush Divsalar,et al.  Multiple trellis coded modulation (MTCM) , 1988, IEEE Trans. Commun..

[8]  Bixio Rimoldi,et al.  A decomposition approach to CPM , 1988, IEEE Trans. Inf. Theory.

[9]  Bruno O. Shubert,et al.  Random variables and stochastic processes , 1979 .

[10]  Jr. G. Forney,et al.  The viterbi algorithm , 1973 .

[11]  N. Arne B. Svensson,et al.  Noncoherent detection of convolutionally encoded continuous phase modulation , 1989, IEEE J. Sel. Areas Commun..

[12]  Dariush Divsalar,et al.  The performance of trellis-coded MDPSK with multiple symbol detection , 1990, IEEE Trans. Commun..

[13]  Stephen G. Wilson,et al.  Convolutional Coding Combined with Continuous Phase Modulation , 1985, IEEE Trans. Commun..

[14]  Dariush Divsalar,et al.  Maximum-likelihood block detection of noncoherent continuous phase modulation , 1993, IEEE Trans. Commun..

[15]  Tor Aulin,et al.  Digital Phase Modulation , 1986, Applications of Communications Theory.

[16]  Sergio Benedetto,et al.  Digital Transmission Theory , 1987 .

[17]  Dariush Divsalar,et al.  Multiple-symbol differential detection of MPSK , 1990, IEEE Trans. Commun..

[18]  Carl-Erik W. Sundberg,et al.  Minimum Euclidean distance for combinations of short rate 1/2 convolutional codes and CPFSK modulation , 1984, IEEE Trans. Inf. Theory.

[19]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[20]  John B. Anderson,et al.  A bandwidth-efficient class of signal-space codes , 1978, IEEE Trans. Inf. Theory.

[21]  Gottfried Ungerboeck,et al.  Channel coding with multilevel/phase signals , 1982, IEEE Trans. Inf. Theory.

[22]  Robert H. Deng,et al.  Trellis-coded multidimensional phase modulation , 1990, IEEE Trans. Inf. Theory.