Adaptive optical beam steering and tuning system based on electrowetting driven fluidic rotor

[1]  Wen-Hui Cheng,et al.  Dynamic beam steering with all-dielectric electro-optic III–V multiple-quantum-well metasurfaces , 2019, Nature Communications.

[2]  Meng Zhang,et al.  Meridian whispering gallery modes sensing in a sessile microdroplet on micro/nanostructured superhydrophobic chip surfaces , 2019, Microfluidics and Nanofluidics.

[3]  Lin Yang,et al.  WDM-compatible multimode optical switching system-on-chip , 2019, Nanophotonics.

[4]  Mathieu C. Husser,et al.  Integration of World-to-Chip Interfaces with Digital Microfluidics for Bacterial Transformation and Enzymatic Assays. , 2019, Analytical chemistry.

[5]  Woo Soo Kim,et al.  Additively Manufactured Digital Microfluidic Platforms for Ion-Selective Sensing. , 2019, ACS sensors.

[6]  Ying Wang,et al.  Self‐Powered Optical Switch Based on Triboelectrification‐Triggered Liquid Crystal Alignment for Wireless Sensing , 2019, Advanced Functional Materials.

[7]  Xiaoyu Zheng,et al.  Additive manufacturing of complex micro-architected graphene aerogels , 2018 .

[8]  Jin-Hui Wang,et al.  Liquid prism with dual-interface based on electrowetting effect , 2018, Optics Communications.

[9]  Xiaoyu Zheng,et al.  Additive Manufacturing and size-dependent mechanical properties of three-dimensional microarchitected, high-temperature ceramic metamaterials , 2018 .

[10]  Xing-dong Liang,et al.  Demonstration of a microwave photonic synthetic aperture radar based on photonic-assisted signal generation and stretch processing. , 2017, Optics express.

[11]  Ming C. Wu,et al.  Diffraction-Based Optical Switching with MEMS , 2017 .

[12]  M. Heck Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering , 2017 .

[13]  Xiaoyu Zheng,et al.  Multiscale metallic metamaterials. , 2016, Nature materials.

[14]  Ranjeet Kumar,et al.  High-resolution aliasing-free optical beam steering , 2016 .

[15]  H. Wadley,et al.  Mechanical response of Ti–6Al–4V octet-truss lattice structures , 2015 .

[16]  Zheng Zheng,et al.  Graphene surface plasmon waveguides incorporating high-index dielectric ridges for single mode transmission , 2014 .

[17]  Howon Lee,et al.  Ultralight, ultrastiff mechanical metamaterials , 2014, Science.

[18]  Chao Liu,et al.  Mirror Reflector Actuated by Liquid Droplet , 2014, IEEE Photonics Technology Letters.

[19]  Michael R. Watts,et al.  Large-scale nanophotonic phased array , 2013, Nature.

[20]  Wyatt C. Nelson,et al.  Droplet Actuation by Electrowetting-on-Dielectric (EWOD): A Review , 2012 .

[21]  Jiangtao Cheng,et al.  Adaptive beam tracking and steering via electrowetting-controlled liquid prism , 2011 .

[22]  Asghar Tabatabaei Balaei,et al.  Switchable Beam Steering/Null Steering Algorithm for CW Interference Mitigation in GPS C/A Code Receivers , 2011, IEEE Transactions on Aerospace and Electronic Systems.

[23]  Kiyoshi Matsumoto,et al.  Capillary motor driven by electrowetting. , 2010, Lab on a chip.

[24]  S. Noda,et al.  On-chip beam-steering photonic-crystal lasers , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[25]  Jiangtao Cheng,et al.  Adaptive Chip Cooling Using Electrowetting on Coplanar Control Electrodes , 2010 .

[26]  Jiangtao Cheng,et al.  Active thermal management of on-chip hot spots using EWOD-driven droplet microfluidics , 2010 .

[27]  F. Mugele Fundamental challenges in electrowetting: from equilibrium shapes to contact angle saturation and drop dynamics , 2009 .

[28]  Shin-Tson Wu,et al.  Broadband and polarization-independent beam steering using dielectrophoresis-tilted prism. , 2009, Optics express.

[29]  Syed Azer Reza,et al.  A liquid lens-based broadband variable fiber optical attenuator , 2009 .

[30]  Chang-Jin C J Kim,et al.  All-electronic droplet generation on-chip with real-time feedback control for EWOD digital microfluidics. , 2008, Lab on a chip.

[31]  Jason Heikenfeld,et al.  Electrowetting manipulation of any optical film , 2007 .

[32]  Jason Heikenfeld,et al.  Agile wide-angle beam steering with electrowetting microprisms. , 2006, Optics express.

[33]  Steven M Beck,et al.  Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing. , 2005, Applied optics.

[34]  J. Baret,et al.  Electrowetting: from basics to applications , 2005 .

[35]  John Ralston,et al.  Contact angle saturation in electrowetting. , 2005, The journal of physical chemistry. B.

[36]  Robin D. Rogers,et al.  Ionic Liquids--Solvents of the Future? , 2003, Science.

[37]  Yoshiteru Yasuda,et al.  Effect of surface texturing on friction reduction between ceramic and steel materials under lubricated sliding contact , 2003 .

[38]  J. O. Peralta,et al.  Security PIDS with physical sensors, real-time pattern recognition, and continuous patrol , 2002, IEEE Trans. Syst. Man Cybern. Part C.

[39]  John Ralston,et al.  Electrowetting: a model for contact-angle saturation , 2000 .

[40]  R. Murray,et al.  Basics or Applications , 1998 .

[41]  Iyemeh E. Uchendu,et al.  Survey of Beam Steering Techniques Available for Millimeter Wave Applications , 2016 .

[42]  Nan Guo,et al.  60-GHz Millimeter-Wave Radio: Principle, Technology, and New Results , 2007, EURASIP J. Wirel. Commun. Netw..

[43]  C. Kim,et al.  Electrowetting and electrowetting-on-dielectric for microscale liquid handling , 2002 .

[44]  Robert C. Wolpert,et al.  A Review of the , 1985 .